Results 1  10
of
55
Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol with active expressions
 ALGOLLIKE LANGUAGES
, 1997
"... The manipulation of objects with state which changes over time is allpervasive in computing. Perhaps the simplest example of such objects are the program variables of classical imperative languages. An important strand of work within the study of such languages, pioneered by John Reynolds, focusses ..."
Abstract

Cited by 105 (19 self)
 Add to MetaCart
The manipulation of objects with state which changes over time is allpervasive in computing. Perhaps the simplest example of such objects are the program variables of classical imperative languages. An important strand of work within the study of such languages, pioneered by John Reynolds, focusses on "Idealized Algol", an elegant synthesis of imperative and functional features. We present a novel semantics for Idealized Algol using games, which is quite unlike traditional denotational models of state. The model takes into account the irreversibility of changes in state, and makes explicit the difference between copying and sharing of entities. As a formal measure of the accuracy of our model, we obtain a full abstraction theorem for Idealized Algol with active expressions.
Full Abstraction for Functional Languages with Control
 In Proceedings, Twelfth Annual IEEE Symposium on Logic in Computer Science
, 1997
"... This paper considers the consequences of relaxing the bracketing condition on `dialogue games', showing that this leads to a category of games which can be `factorized' into a wellbracketed substructure, and a set of classically typed morphisms. These are shown to be sound denotations for ..."
Abstract

Cited by 69 (6 self)
 Add to MetaCart
(Show Context)
This paper considers the consequences of relaxing the bracketing condition on `dialogue games', showing that this leads to a category of games which can be `factorized' into a wellbracketed substructure, and a set of classically typed morphisms. These are shown to be sound denotations for control operators, allowing the factorization to be used to extend the definability result for PCF to one for PCF with control operators at atomic types. Thus we define a fully abstract and effectively presentable model of a functional language with nonlocal control as part of a modular approach to modelling nonfunctional features using games. 1.
Algorithmic Game Semantics
 In Schichtenberg and Steinbruggen [16
, 2001
"... Introduction SAMSON ABRAMSKY (samson@comlab.ox.ac.uk) Oxford University Computing Laboratory 1. Introduction Game Semantics has emerged as a powerful paradigm for giving semantics to a variety of programming languages and logical systems. It has been used to construct the first syntaxindependen ..."
Abstract

Cited by 54 (3 self)
 Add to MetaCart
Introduction SAMSON ABRAMSKY (samson@comlab.ox.ac.uk) Oxford University Computing Laboratory 1. Introduction Game Semantics has emerged as a powerful paradigm for giving semantics to a variety of programming languages and logical systems. It has been used to construct the first syntaxindependent fully abstract models for a spectrum of programming languages ranging from purely functional languages to languages with nonfunctional features such as control operators and locallyscoped references [4, 21, 5, 19, 2, 22, 17, 11]. A substantial survey of the state of the art of Game Semantics circa 1997 was given in a previous Marktoberdorf volume [6]. Our aim in this tutorial presentation is to give a first indication of how Game Semantics can be developed in a new, algorithmic direction, with a view to applications in computerassisted verification and program analysis. Some promising steps have already been taken in this
A Semantic analysis of control
, 1998
"... This thesis examines the use of denotational semantics to reason about control flow in sequential, basically functional languages. It extends recent work in game semantics, in which programs are interpreted as strategies for computation by interaction with an environment. Abramsky has suggested that ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
(Show Context)
This thesis examines the use of denotational semantics to reason about control flow in sequential, basically functional languages. It extends recent work in game semantics, in which programs are interpreted as strategies for computation by interaction with an environment. Abramsky has suggested that an intensional hierarchy of computational features such as state, and their fully abstract models, can be captured as violations of the constraints on strategies in the basic functional model. Nonlocal control flow is shown to fit into this framework as the violation of strong and weak ‘bracketing ’ conditions, related to linear behaviour. The language µPCF (Parigot’s λµ with constants and recursion) is adopted as a simple basis for highertype, sequential computation with access to the flow of control. A simple operational semantics for both callbyname and callbyvalue evaluation is described. It is shown that dropping the bracketing condition on games models of PCF yields fully abstract models of µPCF.
Kripke Logical Relations and PCF
 Information and Computation
, 1995
"... Sieber has described a model of PCF consisting of continuous functions that are invariant under certain (finitary) logical relations, and shown that it is fully abstract for closed terms of up to thirdorder types. We show that one may achieve full abstraction at all types using a form of "Krip ..."
Abstract

Cited by 31 (3 self)
 Add to MetaCart
(Show Context)
Sieber has described a model of PCF consisting of continuous functions that are invariant under certain (finitary) logical relations, and shown that it is fully abstract for closed terms of up to thirdorder types. We show that one may achieve full abstraction at all types using a form of "Kripke logical relations" introduced by Jung and Tiuryn to characterize definability. To appear in Information and Computation. (Accepted, October 1994) Supported by NSF grant CCR92110829. 1 Introduction The nature of sequential functional computation has fascinated computer scientists ever since Scott remarked on a curious incompleteness phenomenon when he introduced LCF (Logic for Computable Functions) and its continuous function model in 1969 (Scott, 1993). Scott noted that although the functionals definable by terms in PCFthe term language of LCFadmitted a sequential evaluation strategy, there were functions in the model that seemed to require a parallel evaluation strategy. "Sequen...
Correspondence between Operational and Denotational Semantics
 Handbook of Logic in Computer Science
, 1995
"... This course introduces the operational and denotational semantics of PCF and examines the relationship between the two. Topics: Syntax and operational semantics of PCF, Activity Lemma, undefinability of parallel or; Context Lemma (first principles proof) and proof by logical relations Denotational ..."
Abstract

Cited by 23 (0 self)
 Add to MetaCart
This course introduces the operational and denotational semantics of PCF and examines the relationship between the two. Topics: Syntax and operational semantics of PCF, Activity Lemma, undefinability of parallel or; Context Lemma (first principles proof) and proof by logical relations Denotational semantics of PCF induced by an interpretation; (standard) Scott model, adequacy, weak adequacy and its proof (by a computability predicate) Domain Theory up to SFP and Scott domains; non full abstraction of the standard model, definability of compact elements and full abstraction for PCFP (PCF + parallel or), properties of orderextensional (continuous) models of PCF, Milner's model and Mulmuley's construction (excluding proofs) Additional topics (time permitting): results on pure simplytyped lambda calculus, Friedman 's Completeness Theorem, minimal model, logical relations and definability, undecidability of lambda definability (excluding proof), dIdomains and stable functions Homepa...
Definability and full abstraction
 GDP FESTSCHRIFT
"... Game semantics has renewed denotational semantics. It offers among other things an attractive classification of programming features, and has brought a bunch of new definability results. In parallel, in the denotational semantics of proof theory, several full completeness results have been shown sin ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
Game semantics has renewed denotational semantics. It offers among other things an attractive classification of programming features, and has brought a bunch of new definability results. In parallel, in the denotational semantics of proof theory, several full completeness results have been shown since the early nineties. In this note, we review the relation between definability and full abstraction, and we put a few old and recent results of this kind in perspective.
Objects, Interference, and the Yoneda Embedding
, 1995
"... We present a new semantics for Algollike languages that combines methods from two prior lines of development: ffl the objectbased approach of [21,22], where the meaning of an imperative program is described in terms of sequences of observable actions, and ffl the functorcategory approach initiat ..."
Abstract

Cited by 16 (7 self)
 Add to MetaCart
(Show Context)
We present a new semantics for Algollike languages that combines methods from two prior lines of development: ffl the objectbased approach of [21,22], where the meaning of an imperative program is described in terms of sequences of observable actions, and ffl the functorcategory approach initiated by Reynolds [24], where the varying nature of the runtime stack is explained using functors from a category of store shapes to a category of cpos. The semantics