Results 11  20
of
48
Natural computation and nonTuring models of computation
 Theoretical Computer Science
, 2004
"... We propose certain nonTuring models of computation, but our intent is not to advocate models that surpass the power of Turing Machines (TMs), but to defend the need for models with orthogonal notions of power. We review the nature of models and argue that they are relative to a domain of applicatio ..."
Abstract

Cited by 18 (9 self)
 Add to MetaCart
We propose certain nonTuring models of computation, but our intent is not to advocate models that surpass the power of Turing Machines (TMs), but to defend the need for models with orthogonal notions of power. We review the nature of models and argue that they are relative to a domain of application and are illsuited to use outside that domain. Hence we review the presuppositions and context of the TM model and show that it is unsuited to natural computation (computation occurring in or inspired by nature). Therefore we must consider an expanded definition of computation that includes alternative (especially analog) models as well as the TM. Finally we present an alternative model, of continuous computation, more suited to natural computation. We conclude with remarks on the expressivity of formal mathematics. Key words: analog computation, analog computer, biocomputation, computability, computation on reals, continuous computation, formal system, hypercomputation,
A theory of complexity for continuous time systems
 Journal of Complexity
, 2002
"... We present a model of computation with ordinary differential equations (ODEs) which converge to attractors that are interpreted as the output of a computation. We introduce a measure of complexity for exponentially convergent ODEs, enabling an algorithmic analysis of continuous time flows and their ..."
Abstract

Cited by 16 (0 self)
 Add to MetaCart
We present a model of computation with ordinary differential equations (ODEs) which converge to attractors that are interpreted as the output of a computation. We introduce a measure of complexity for exponentially convergent ODEs, enabling an algorithmic analysis of continuous time flows and their comparison with discrete algorithms. We define polynomial and logarithmic continuous time complexity classes and show that an ODE which solves the maximum network flow problem has polynomial time complexity. We also analyze a simple flow that solves the Maximum problem in logarithmic time. We conjecture that a subclass of the continuous P is equivalent to the classical P. 2001 Elsevier Science (USA) Key Words: theory of analog computation; dynamical systems.
Real recursive functions and their hierarchy
, 2004
"... ... onsidered, first as a model of analog computation, and second to obtain analog characterizations of classical computational complexity classes (Unconventional Models of Computation, UMC 2002, Lecture Notes in Computer Science, Vol. 2509, Springer, Berlin, pp. 1–14). However, one of the operators ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
... onsidered, first as a model of analog computation, and second to obtain analog characterizations of classical computational complexity classes (Unconventional Models of Computation, UMC 2002, Lecture Notes in Computer Science, Vol. 2509, Springer, Berlin, pp. 1–14). However, one of the operators introduced in the seminal paper by Moore (1996), the minimalization operator, has not been considered: (a) although differential recursion (the analog counterpart of classical recurrence) is, in some extent, directly implementable in the General Purpose Analog Computer of Claude Shannon, analog minimalization is far from physical realizability, and (b) analog minimalization was borrowed from classical recursion theory and does not fit well the analytic realm of analog computation. In this paper, we show that a most natural operator captured from analysis—the operator of taking a limit—can be used properly to enhance the theory of recursion over the reals, providing good solutions to puzzling problems raised by the original model.
An Optical Model of Computation
 Theoretical Computer Science
, 2004
"... We prove computability and complexity results for an original model of computation called the continuous space machine. Our model is inspired by the theory of Fourier optics. We prove our model can simulate analog recurrent neural networks, thus establishing a lower bound on its computational power. ..."
Abstract

Cited by 14 (10 self)
 Add to MetaCart
We prove computability and complexity results for an original model of computation called the continuous space machine. Our model is inspired by the theory of Fourier optics. We prove our model can simulate analog recurrent neural networks, thus establishing a lower bound on its computational power. We also define a \Theta (log_2 n) unordered search algorithm with our model.
Elementarily computable functions over the real numbers and Rsubrecursive functions
 THEORETICAL COMPUTER SCIENCE
, 2005
"... We present an analog and machineindependent algebraic characterization of elementarily computable functions over the real numbers in the sense of recursive analysis: we prove that they correspond to the smallest class of functions that contains some basic functions, and closed by composition, linea ..."
Abstract

Cited by 13 (5 self)
 Add to MetaCart
We present an analog and machineindependent algebraic characterization of elementarily computable functions over the real numbers in the sense of recursive analysis: we prove that they correspond to the smallest class of functions that contains some basic functions, and closed by composition, linear integration, and a simple limit schema. We generalize this result to all higher levels of the Grzegorczyk Hierarchy. This paper improves several previous partial characterizations and has a dual interest: • Concerning recursive analysis, our results provide machineindependent characterizations of natural classes of computable functions over the real numbers, allowing to define these classes without usual considerations on higherorder (type 2) Turing machines. • Concerning analog models, our results provide a characterization of the power of a natural class of analog models over the real numbers and provide new insights for understanding the relations between several analog computational models.
A ComplexSystems Perspective on the "Computation vs. Dynamics" Debate in Cognitive Science
, 1998
"... I review the purported opposition between computational and dynamical approaches in cognitive science. I argue that both computational and dynamical notions will be necessary for a full explanatory account of cognition, and give a perspective on how recent research in complex systems can lead to a m ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
I review the purported opposition between computational and dynamical approaches in cognitive science. I argue that both computational and dynamical notions will be necessary for a full explanatory account of cognition, and give a perspective on how recent research in complex systems can lead to a much needed rapprochement between computational and dynamical styles of explanation. The "Computation vs. Dynamics" Debate Cognition and computation have been deeply linked for at least fifty years, particularly in the symbolic AI tradition. The origin of the electronic digital computer lies in Turing's attempt to formalize the kinds of symbolic logical manipulations that human mathematicians can perform, and computation was later viewed by Newell, Simon, and others as the correct conceptual framework for understanding thought in general (Newell & Simon, 1976). Another tradition for understanding thought is rooted in dynamical systems theory. Dynamical approaches to cognition go back at leas...
The Complexity of Real Recursive Functions
 Unconventional Models of Computation (UMC'02), LNCS 2509
, 2002
"... We explore recursion theory on the reals, the analog counterpart of recursive function theory. In recursion theory on the reals, the discrete operations of standard recursion theory are replaced by operations on continuous functions, such as composition and various forms of differential equations. W ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
We explore recursion theory on the reals, the analog counterpart of recursive function theory. In recursion theory on the reals, the discrete operations of standard recursion theory are replaced by operations on continuous functions, such as composition and various forms of differential equations. We define classes of real recursive functions, in a manner similar to the classical approach in recursion theory, and we study their complexity. In particular, we prove both upper and lower bounds for several classes of real recursive functions, which lie inside the primitive recursive functions and, therefore, can be characterized in terms of standard computational complexity.
Upper and Lower Bounds on ContinuousTime Computation
"... We consider various extensions and modifications of Shannon's General Purpose Analog Computer, which is a model of computation by differential equations in continuous time. We show that several classical computation classes have natural analog counterparts, including the primitive recursive function ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
We consider various extensions and modifications of Shannon's General Purpose Analog Computer, which is a model of computation by differential equations in continuous time. We show that several classical computation classes have natural analog counterparts, including the primitive recursive functions, the elementary functions, the levels of the Grzegorczyk hierarchy, and the arithmetical and analytical hierarchies.
The general purpose analog computer and computable analysis are two equivalent paradigms of analog computation
 Theory and Applications of Models of Computation, Third International Conference, TAMC 2006
, 2006
"... Abstract. In this paper we revisit one of the first models of analog computation, Shannon’s General Purpose Analog Computer (GPAC). The GPAC has often been argued to be weaker than computable analysis. As main contribution, we show that if we change the notion of GPACcomputability in a natural way, ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
Abstract. In this paper we revisit one of the first models of analog computation, Shannon’s General Purpose Analog Computer (GPAC). The GPAC has often been argued to be weaker than computable analysis. As main contribution, we show that if we change the notion of GPACcomputability in a natural way, we compute exactly all real computable functions (in the sense of computable analysis). Moreover, since GPACs are equivalent to systems of polynomial differential equations then we show that all real computable functions can be defined by such models. 1
Some bounds on the computational power of Piecewise Constant Derivative systems.
 In Proceeding of ICALP'97
, 1997
"... We study the computational power of Piecewise Constant Derivative (PCD) systems. PCD systems are dynamical systems defined by a piecewise constant differential equation and can be considered as computational machines working on a continuous space with a continuous time. We show that the computation ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
We study the computational power of Piecewise Constant Derivative (PCD) systems. PCD systems are dynamical systems defined by a piecewise constant differential equation and can be considered as computational machines working on a continuous space with a continuous time. We show that the computation time of these machines can be measured either as a discrete value, called discrete time, or as a continuous value, called continuous time. We relate the two notions of time for general PCD systems. We prove that general PCD systems are equivalent to Turing machines and linear machines in finite discrete time. We prove that the languages recognized by purely rational PCD systems in dimension d in finite continuous time are precisely the languages of the d \Gamma 2 th level of the arithmetical hierarchy. Hence the reachability problem of purely rational PCD systems of dimension d in finite continuous time is \Sigma d\Gamma2 complete. 1 Introduction There has been recently an increasing in...