Results 1  10
of
74
Computational mechanics: Pattern and prediction, structure and simplicity
 Journal of Statistical Physics
, 1999
"... Computational mechanics, an approach to structural complexity, defines a process’s causal states and gives a procedure for finding them. We show that the causalstate representation—an Emachine—is the minimal one consistent with ..."
Abstract

Cited by 44 (8 self)
 Add to MetaCart
Computational mechanics, an approach to structural complexity, defines a process’s causal states and gives a procedure for finding them. We show that the causalstate representation—an Emachine—is the minimal one consistent with
Analog computers and recursive functions over the reals
 Journal of Complexity
, 2003
"... In this paper we show that Shannon’s General Purpose Analog Computer (GPAC) is equivalent to a particular class of recursive functions over the reals with the flavour of Kleene’s classical recursive function theory. We first consider the GPAC and several of its extensions to show that all these mode ..."
Abstract

Cited by 33 (19 self)
 Add to MetaCart
In this paper we show that Shannon’s General Purpose Analog Computer (GPAC) is equivalent to a particular class of recursive functions over the reals with the flavour of Kleene’s classical recursive function theory. We first consider the GPAC and several of its extensions to show that all these models have drawbacks and we introduce an alternative continuoustime model of computation that solve these problems. We also show that this new model preserve all the significant relations involving the previous models (namely, the equivalence with the differentially algebraic functions). We then continue with the topic of recursive functions over the reals, and we show full connections between functions generated by the model introduced so far and a particular class of recursive functions over the reals. 1
An analog characterization of the Grzegorczyk hierarchy
 Journal of Complexity
, 2002
"... We study a restricted version of Shannon's General . . . ..."
Abstract

Cited by 29 (15 self)
 Add to MetaCart
We study a restricted version of Shannon's General . . .
Iteration, Inequalities, and Differentiability in Analog Computers
, 1999
"... Shannon's General Purpose Analog Computer (GPAC) is an elegant model of analog computation in continuous time. In this paper, we consider whether the set G of GPACcomputable functions is closed under iteration, that is, whether for any function f(x) 2 G there is a function F (x; t) 2 G s ..."
Abstract

Cited by 29 (15 self)
 Add to MetaCart
Shannon's General Purpose Analog Computer (GPAC) is an elegant model of analog computation in continuous time. In this paper, we consider whether the set G of GPACcomputable functions is closed under iteration, that is, whether for any function f(x) 2 G there is a function F (x; t) 2 G such that F (x; t) = f t (x) for nonnegative integers t. We show that G is not closed under iteration, but a simple extension of it is. In particular, if we relax the definition of the GPAC slightly to include unique solutions to boundary value problems, or equivalently if we allow functions x k (x) that sense inequalities in a dierentiable way, the resulting class, which we call G + k , is closed under iteration. Furthermore, G + k includes all primitive recursive functions, and has the additional closure property that if T (x) is in G+k , then any function of x computable by a Turing machine in T (x) time is also.
Achilles and the Tortoise climbing up the hyperarithmetical hierarchy
, 1997
"... We pursue the study of the computational power of Piecewise Constant Derivative (PCD) systems started in [5, 6]. PCD systems are dynamical systems defined by a piecewise constant differential equation and can be considered as computational machines working on a continuous space with a continuous tim ..."
Abstract

Cited by 27 (6 self)
 Add to MetaCart
We pursue the study of the computational power of Piecewise Constant Derivative (PCD) systems started in [5, 6]. PCD systems are dynamical systems defined by a piecewise constant differential equation and can be considered as computational machines working on a continuous space with a continuous time. We prove that the languages recognized by rational PCD systems in dimension d = 2k + 3 (respectively: d = 2k + 4), k 0, in finite continuous time are precisely the languages of the ! k th (resp. ! k + 1 th ) level of the hyperarithmetical hierarchy. Hence the reachability problem for rational PCD systems of dimension d = 2k + 3 (resp. d = 2k + 4), k 1, is hyperarithmetical and is \Sigma ! kcomplete (resp. \Sigma ! k +1 complete).
Polynomial differential equations compute all real computable functions on computable compact intervals
, 2007
"... ..."
Hypercomputation and the Physical ChurchTuring Thesis
, 2003
"... A version of the ChurchTuring Thesis states that every e#ectively realizable physical system can be defined by Turing Machines (`Thesis P'); in this formulation the Thesis appears an empirical, more than a logicomathematical, proposition. We review the main approaches to computation beyond Tu ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
A version of the ChurchTuring Thesis states that every e#ectively realizable physical system can be defined by Turing Machines (`Thesis P'); in this formulation the Thesis appears an empirical, more than a logicomathematical, proposition. We review the main approaches to computation beyond Turing definability (`hypercomputation'): supertask, nonwellfounded, analog, quantum, and retrocausal computation. These models depend on infinite computation, explicitly or implicitly, and appear physically implausible; moreover, even if infinite computation were realizable, the Halting Problem would not be a#ected. Therefore, Thesis P is not essentially di#erent from the standard ChurchTuring Thesis.
Analog Computation with Dynamical Systems
 Physica D
, 1997
"... This paper presents a theory that enables to interpret natural processes as special purpose analog computers. Since physical systems are naturally described in continuous time, a definition of computational complexity for continuous time systems is required. In analogy with the classical discrete th ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
This paper presents a theory that enables to interpret natural processes as special purpose analog computers. Since physical systems are naturally described in continuous time, a definition of computational complexity for continuous time systems is required. In analogy with the classical discrete theory we develop fundamentals of computational complexity for dynamical systems, discrete or continuous in time, on the basis of an intrinsic time scale of the system. Dissipative dynamical systems are classified into the computational complexity classes P d , CoRP d , NP d
Some recent developments on Shannon’s general purpose analog computer
 Mathematical Logic Quarterly
"... This paper revisits one of the first models of analog computation, the General Purpose Analog Computer (GPAC). In particular, we restrict our attention to the improved model presented in [11] and we show that it can be further refined. With this we prove the following: (i) the previous model can be ..."
Abstract

Cited by 18 (7 self)
 Add to MetaCart
This paper revisits one of the first models of analog computation, the General Purpose Analog Computer (GPAC). In particular, we restrict our attention to the improved model presented in [11] and we show that it can be further refined. With this we prove the following: (i) the previous model can be simplified; (ii) it admits extensions having close connections with the class of smooth continuous time dynamical systems. As a consequence, we conclude that some of these extensions achieve Turing universality. Finally, it is shown that if we introduce a new notion of computability for the GPAC, based on ideas from computable analysis, then one can compute transcendentally transcendental functions such as the Gamma function or Riemann’s Zeta function. 1
Recursive analysis characterized as a class of real recursive functions
 Fundamenta Informaticae
, 2006
"... Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real r ..."
Abstract

Cited by 18 (8 self)
 Add to MetaCart
Recently, using a limit schema, we presented an analog and machine independent algebraic characterization of elementary functions over the real numbers in the sense of recursive analysis. In a different and orthogonal work, we proposed a minimalization schema that allows to provide a class of real recursive functions that corresponds to extensions of computable functions over the integers. Mixing the two approaches we prove that computable functions over the real numbers in the sense of recursive analysis can be characterized as the smallest class of functions that contains some basic functions, and closed by composition, linear integration, minimalization and limit schema.