Results 1  10
of
19
A Modal Analysis of Staged Computation
 JOURNAL OF THE ACM
, 1996
"... We show that a type system based on the intuitionistic modal logic S4 provides an expressive framework for specifying and analyzing computation stages in the context of functional languages. Our main technical result is a conservative embedding of Nielson & Nielson's twolevel functional language in ..."
Abstract

Cited by 186 (22 self)
 Add to MetaCart
We show that a type system based on the intuitionistic modal logic S4 provides an expressive framework for specifying and analyzing computation stages in the context of functional languages. Our main technical result is a conservative embedding of Nielson & Nielson's twolevel functional language in our language MiniML, which in
A Judgmental Reconstruction of Modal Logic
 Mathematical Structures in Computer Science
, 1999
"... this paper we reconsider the foundations of modal logic, following MartinL of's methodology of distinguishing judgments from propositions [ML85]. We give constructive meaning explanations for necessity (2) and possibility (3). This exercise yields a simple and uniform system of natural deduction for ..."
Abstract

Cited by 161 (38 self)
 Add to MetaCart
this paper we reconsider the foundations of modal logic, following MartinL of's methodology of distinguishing judgments from propositions [ML85]. We give constructive meaning explanations for necessity (2) and possibility (3). This exercise yields a simple and uniform system of natural deduction for intuitionistic modal logic which does not exhibit anomalies found in other proposals. We also give a new presentation of lax logic [FM97] and find that it is already contained in modal logic, using the decomposition of the lax modality fl A as
Rewriting Logic as a Logical and Semantic Framework
, 1993
"... Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are und ..."
Abstract

Cited by 147 (52 self)
 Add to MetaCart
Rewriting logic [72] is proposed as a logical framework in which other logics can be represented, and as a semantic framework for the specification of languages and systems. Using concepts from the theory of general logics [70], representations of an object logic L in a framework logic F are understood as mappings L ! F that translate one logic into the other in a conservative way. The ease with which such maps can be defined for a number of quite different logics of interest, including equational logic, Horn logic with equality, linear logic, logics with quantifiers, and any sequent calculus presentation of a logic for a very general notion of "sequent," is discussed in detail. Using the fact that rewriting logic is reflective, it is often possible to reify inside rewriting logic itself a representation map L ! RWLogic for the finitely presentable theories of L. Such a reification takes the form of a map between the abstract data types representing the finitary theories of...
A temporallogic approach to bindingtime analysis
 In Proceedings, 11 th Annual IEEE Symposium on Logic in Computer Science
, 1996
"... is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent publications in the BRICS Report Series. Copies may be obtained by contacting: BRICS ..."
Abstract

Cited by 81 (5 self)
 Add to MetaCart
is permitted for educational or research use on condition that this copyright notice is included in any copy. See back inner page for a list of recent publications in the BRICS Report Series. Copies may be obtained by contacting: BRICS
Deep Sequent Systems for Modal Logic
 ARCHIVE FOR MATHEMATICAL LOGIC
"... We see a systematic set of cutfree axiomatisations for all the basic normal modal logics formed by some combination the axioms d,t,b,4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the litera ..."
Abstract

Cited by 27 (4 self)
 Add to MetaCart
We see a systematic set of cutfree axiomatisations for all the basic normal modal logics formed by some combination the axioms d,t,b,4, 5. They employ a form of deep inference but otherwise stay very close to Gentzen’s sequent calculus, in particular they enjoy a subformula property in the literal sense. No semantic notions are used inside the proof systems, in particular there is no use of labels. All their rules are invertible and the rules cut, weakening and contraction are admissible. All systems admit a straightforward terminating proof search procedure as well as a syntactic cut elimination procedure.
Logical Modalities and MultiStage Programming
, 1999
"... . Multistage programming is a method for improving the performance of programs through the introduction of controlled program specialization. This paper makes a case for multistage programming with open code and closed values. We argue that a simple language exploiting interactions between two log ..."
Abstract

Cited by 22 (13 self)
 Add to MetaCart
. Multistage programming is a method for improving the performance of programs through the introduction of controlled program specialization. This paper makes a case for multistage programming with open code and closed values. We argue that a simple language exploiting interactions between two logical modalities is well suited for multistage programming, and report the results from our study of categorical models for multistage languages. Keywords: Multistage programming, categorical models, semantics, type systems (multilevel typed calculi) , combination of logics (modal and temporal). 1 Introduction Multistage programming is a method for improving the performance of programs through the introduction of controlled program specialization [15, 13]. MetaML was the first language designed specifically to support this method. It provides a type constructor for "code" and staging annotations for building, combining, and executing code, thus allowing the programmer to have finer cont...
On an Intuitionistic Modal Logic
 Studia Logica
, 2001
"... . In this paper we consider an intuitionistic variant of the modal logic S4 (which we call IS4). The novelty of this paper is that we place particular importance on the natural deduction formulation of IS4our formulation has several important metatheoretic properties. In addition, we study models ..."
Abstract

Cited by 20 (4 self)
 Add to MetaCart
. In this paper we consider an intuitionistic variant of the modal logic S4 (which we call IS4). The novelty of this paper is that we place particular importance on the natural deduction formulation of IS4our formulation has several important metatheoretic properties. In addition, we study models of IS4, not in the framework of Kripke semantics, but in the more general framework of category theory. This allows not only a more abstract definition of a whole class of models but also a means of modelling proofs as well as provability. 1. Introduction Modal logics are traditionally extensions of classical logic with new operators, or modalities, whose operation is intensional. Modal logics are most commonly justified by the provision of an intuitive semantics based upon `possible worlds', an idea originally due to Kripke. Kripke also provided a possible worlds semantics for intuitionistic logic, and so it is natural to consider intuitionistic logic extended with intensional modalities...
Encoding Modal Logics in Logical Frameworks
 Studia Logica
, 1997
"... We present and discuss various formalizations of Modal Logics in Logical Frameworks based on Type Theories. We consider both Hilbert and Natural Deductionstyle proof systems for representing both truth (local) and validity (global) consequence relations for various Modal Logics. We introduce severa ..."
Abstract

Cited by 14 (8 self)
 Add to MetaCart
We present and discuss various formalizations of Modal Logics in Logical Frameworks based on Type Theories. We consider both Hilbert and Natural Deductionstyle proof systems for representing both truth (local) and validity (global) consequence relations for various Modal Logics. We introduce several techniques for encoding the structural peculiarities of necessitation rules, in the typed calculus metalanguage of the Logical Frameworks. These formalizations yield readily proofeditors for Modal Logics when implemented in Proof Development Environments, such as Coq or LEGO. Keywords: Hilbert and NaturalDeduction proof systems for Modal Logics, Logical Frameworks, Typed calculus, Proof Assistants. Introduction In this paper we address the issue of designing proof development environments (i.e. "proof editors" or, even better, "proof assistants") for Modal Logics, in the style of [11, 12]. To this end, we explore the possibility of using Logical Frameworks (LF's) based on Type Theory...
Natural Deduction for NonClassical Logics
, 1996
"... We present a framework for machine implementation of families of nonclassical logics with Kripkestyle semantics. We decompose a logic into two interacting parts, each a natural deduction system: a base logic of labelled formulae, and a theory of labels characterizing the properties of the Kripke m ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
We present a framework for machine implementation of families of nonclassical logics with Kripkestyle semantics. We decompose a logic into two interacting parts, each a natural deduction system: a base logic of labelled formulae, and a theory of labels characterizing the properties of the Kripke models. By appropriate combinations we capture both partial and complete fragments of large families of nonclassical logics such as modal, relevance, and intuitionistic logics. Our approach is modular and supports uniform proofs of correctness and proof normalization. We have implemented our work in the Isabelle Logical Framework.
A Categorical Analysis of MultiLevel Languages (Extended Abstract)
, 1999
"... We propose categorical models for fl, 2 , MetaML, and AIM. First, we focus on the underlying logical modalities and the interactions between them, then we investigate the interactions between logical modalities and computational monads. We give two examples of categorical model: one simpler but with ..."
Abstract

Cited by 10 (7 self)
 Add to MetaCart
We propose categorical models for fl, 2 , MetaML, and AIM. First, we focus on the underlying logical modalities and the interactions between them, then we investigate the interactions between logical modalities and computational monads. We give two examples of categorical model: one simpler but with some limitations, the other more complex but able to model all features of AIM.