Results 1  10
of
17
Factorization Of The Tenth Fermat Number
 MATH. COMP
, 1999
"... We describe the complete factorization of the tenth Fermat number F 10 by the elliptic curve method (ECM). F 10 is a product of four prime factors with 8, 10, 40 and 252 decimal digits. The 40digit factor was found after about 140 Mflopyears of computation. We also discuss the complete factor ..."
Abstract

Cited by 26 (10 self)
 Add to MetaCart
(Show Context)
We describe the complete factorization of the tenth Fermat number F 10 by the elliptic curve method (ECM). F 10 is a product of four prime factors with 8, 10, 40 and 252 decimal digits. The 40digit factor was found after about 140 Mflopyears of computation. We also discuss the complete factorization of other Fermat numbers by ECM, and summarize the factorizations of F 5 ; : : : ; F 11 .
Two new factors of Fermat numbers
, 1997
"... Abstract. We report the discovery of new 27decimal digit factors of the thirteenth and sixteenth Fermat numbers. Each of the new factors was found by the elliptic curve method. After division by the new factors and other known factors, the quotients are seen to be composite numbers with 2391 and 19 ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
Abstract. We report the discovery of new 27decimal digit factors of the thirteenth and sixteenth Fermat numbers. Each of the new factors was found by the elliptic curve method. After division by the new factors and other known factors, the quotients are seen to be composite numbers with 2391 and 19694 decimal digits respectively. 1.
Three New Factors of Fermat Numbers
 Math. Comp
, 2000
"... We report the discovery of a new factor for each of the Fermat numbers F 13 ,F 15 ,F 16 . These new factors have 27, 33 and 27 decimal digits respectively. Each factor was found by the elliptic curve method. After division by the new factors and previously known factors, the remaining cofactors are ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
(Show Context)
We report the discovery of a new factor for each of the Fermat numbers F 13 ,F 15 ,F 16 . These new factors have 27, 33 and 27 decimal digits respectively. Each factor was found by the elliptic curve method. After division by the new factors and previously known factors, the remaining cofactors are seen to be composite numbers with 2391, 9808 and 19694 decimal digits respectively. 1.
A Simpler Sieving Device: Combining ECM and TWIRL
 In Proceedings of ICISC 2006
, 2006
"... A main obstacle in manufacturing the TWIRL device for realizing the sieving step of the Number Field Sieve is the sophisticated chip layout. Especially the logic for logging and recovering large prime factors found during sieving adds significantly to the layout complexity. We describe a device b ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
A main obstacle in manufacturing the TWIRL device for realizing the sieving step of the Number Field Sieve is the sophisticated chip layout. Especially the logic for logging and recovering large prime factors found during sieving adds significantly to the layout complexity. We describe a device building on the Elliptic Curve Method (ECM) that for parameters of interest allows to replace the complete logging part in TWIRL by an o#wafer postprocessing. The postprocessing is done in real time, leaving the total sieving time basically unchanged.
Integer Factoring
, 2000
"... Using simple examples and informal discussions this article surveys the key ideas and major advances of the last quarter century in integer factorization. ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Using simple examples and informal discussions this article surveys the key ideas and major advances of the last quarter century in integer factorization.
Computational Methods in Public Key Cryptology
, 2002
"... These notes informally review the most common methods from computational number theory that have applications in public key cryptology. ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
(Show Context)
These notes informally review the most common methods from computational number theory that have applications in public key cryptology.
ffl Some history. ffl The elliptic curve method (ECM). ffl Factorization of F10.
"... ..."
(Show Context)