Results 1  10
of
105
Causal Diagrams For Empirical Research
"... The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subjectmatter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if ..."
Abstract

Cited by 240 (41 self)
 Add to MetaCart
The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subjectmatter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifying causal effects from nonexperimental data. If so the diagrams can be queried to produce mathematical expressions for causal effects in terms of observed distributions; otherwise, the diagrams can be queried to suggest additional observations or auxiliary experiments from which the desired inferences can be obtained. Key words: Causal inference, graph models, interventions treatment effect 1 Introduction The tools introduced in this paper are aimed at helping researchers communicate qualitative assumptions about causeeffect relationships, elucidate the ramifications of such assumptions, and derive causal inferences from a combination...
A Guide to the Literature on Learning Probabilistic Networks From Data
, 1996
"... This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the ..."
Abstract

Cited by 203 (0 self)
 Add to MetaCart
This literature review discusses different methods under the general rubric of learning Bayesian networks from data, and includes some overlapping work on more general probabilistic networks. Connections are drawn between the statistical, neural network, and uncertainty communities, and between the different methodological communities, such as Bayesian, description length, and classical statistics. Basic concepts for learning and Bayesian networks are introduced and methods are then reviewed. Methods are discussed for learning parameters of a probabilistic network, for learning the structure, and for learning hidden variables. The presentation avoids formal definitions and theorems, as these are plentiful in the literature, and instead illustrates key concepts with simplified examples. Keywords Bayesian networks, graphical models, hidden variables, learning, learning structure, probabilistic networks, knowledge discovery. I. Introduction Probabilistic networks or probabilistic gra...
Ramification and Causality
 Artificial Intelligence
, 1997
"... The ramification problem in the context of commonsense reasoning about actions and change names the challenge to accommodate actions whose execution causes indirect effects. Not being part of the respective action specification, such effects are consequences of general laws describing dependencies b ..."
Abstract

Cited by 162 (25 self)
 Add to MetaCart
(Show Context)
The ramification problem in the context of commonsense reasoning about actions and change names the challenge to accommodate actions whose execution causes indirect effects. Not being part of the respective action specification, such effects are consequences of general laws describing dependencies between components of the world description. We present a general approach to this problem which incorporates causality, formalized by directed relations between two single effects stating that, under specific circumstances, the occurrence of the first causes the second. Moreover, necessity of exploiting causal information in this way or a similar is argued by elaborating the limitations of common paradigms employed to handle ramifications, namely, the principle of categorization and the policy of minimal change. Our abstract solution is exemplarily integrated into a specific calculus based on the logic programming paradigm. To apper in: Artificial Intelligence Journal On leave from FG Inte...
A general identification condition for causal effects
 In Eighteenth National Conference on Artificial Intelligence
"... This paper concerns the assessment of the effects of actions or policy interventions from a combination of: (i) nonexperimental data, and (ii) substantive assumptions. The assumptions are encoded in the form of a directed acyclic graph, also called “causal graph”, in which some variables are presume ..."
Abstract

Cited by 79 (27 self)
 Add to MetaCart
(Show Context)
This paper concerns the assessment of the effects of actions or policy interventions from a combination of: (i) nonexperimental data, and (ii) substantive assumptions. The assumptions are encoded in the form of a directed acyclic graph, also called “causal graph”, in which some variables are presumed to be unobserved. The paper establishes a necessary and sufficient criterion for the identifiability of the causal effects of a singleton variable on all other variables in the model, and apowerful sufficient criterion for the effects of a singleton variable on any set of variables.
Causal Inference from Graphical Models
, 2001
"... Introduction The introduction of Bayesian networks (Pearl 1986b) and associated local computation algorithms (Lauritzen and Spiegelhalter 1988, Shenoy and Shafer 1990, Jensen, Lauritzen and Olesen 1990) has initiated a renewed interest for understanding causal concepts in connection with modelling ..."
Abstract

Cited by 78 (6 self)
 Add to MetaCart
Introduction The introduction of Bayesian networks (Pearl 1986b) and associated local computation algorithms (Lauritzen and Spiegelhalter 1988, Shenoy and Shafer 1990, Jensen, Lauritzen and Olesen 1990) has initiated a renewed interest for understanding causal concepts in connection with modelling complex stochastic systems. It has become clear that graphical models, in particular those based upon directed acyclic graphs, have natural causal interpretations and thus form a base for a language in which causal concepts can be discussed and analysed in precise terms. As a consequence there has been an explosion of writings, not primarily within mainstream statistical literature, concerned with the exploitation of this language to clarify and extend causal concepts. Among these we mention in particular books by Spirtes, Glymour and Scheines (1993), Shafer (1996), and Pearl (2000) as well as the collection of papers in Glymour and Cooper (1999). Very briefly, but fundamentally,
Chain Graph Models and their Causal Interpretations
 B
, 2001
"... Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultim ..."
Abstract

Cited by 68 (7 self)
 Add to MetaCart
Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultimately fallacious interpretations of chain graphs that are often invoked, implicitly or explicitly. These interpretations also lead to awed methods for applying background knowledge to model selection. We present a valid interpretation by showing how the distribution corresponding to a chain graph may be generated as the equilibrium distribution of dynamic models with feedback. These dynamic interpretations lead to a simple theory of intervention, extending the theory developed for DAGs. Finally, we contrast chain graph models under this interpretation with simultaneous equation models which have traditionally been used to model feedback in econometrics. Keywords: Causal model; cha...
Graphs, Causality, And Structural Equation Models
, 1998
"... Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers. ..."
Abstract

Cited by 62 (15 self)
 Add to MetaCart
Structural equation modeling (SEM) has dominated causal analysis in the social and behavioral sciences since the 1960s. Currently, many SEM practitioners are having difficulty articulating the causal content of SEM and are seeking foundational answers.
Causal inference in statistics: An Overview
, 2009
"... This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all ca ..."
Abstract

Cited by 61 (12 self)
 Add to MetaCart
(Show Context)
This review presents empirical researcherswith recent advances in causal inference, and stresses the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called “causal effects ” or “policy evaluation”) (2) queries about probabilities of counterfactuals, (including assessment of “regret, ” “attribution” or “causes of effects”) and (3) queries about direct and indirect effects (also known as “mediation”). Finally, the paper defines the formal and conceptual relationships between the structural and potentialoutcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both.
DecisionTheoretic Foundations for Causal Reasoning
 Journal of Artificial Intelligence Research
, 1995
"... We present a definition of cause and effect in terms of decisiontheoretic primitives and thereby provide a principled foundation for causal reasoning. Our definition departs from the traditional view of causation in that causal assertions may vary with the set of decisions available. We argue that ..."
Abstract

Cited by 60 (10 self)
 Add to MetaCart
We present a definition of cause and effect in terms of decisiontheoretic primitives and thereby provide a principled foundation for causal reasoning. Our definition departs from the traditional view of causation in that causal assertions may vary with the set of decisions available. We argue that this approach provides added clarity to the notion of cause. Also in this paper, we examine the encoding of causal relationships in directed acyclic graphs. We describe a special class of influence diagrams, those in canonical form, and show its relationship to Pearl's representation of cause and effect. Finally, we show how canonical form facilitates counterfactual reasoning. 1. Introduction Knowledge of cause and effect is crucial for modeling the affects of actions. For example, if we observe a statistical correlation between smoking and lung cancer, we can not conclude from this observation alone that our chances of getting lung cancer will change if we stop smoking. If, however, we als...