Results 1  10
of
42
Drawing Planar Graphs Using the Canonical Ordering
 ALGORITHMICA
, 1996
"... We introduce a new method to optimize the required area, minimum angle and number of bends of planar drawings of graphs on a grid. The main tool is a new type of ordering on the vertices and faces of triconnected planar graphs. Using this method linear time and space algorithms can be designed for m ..."
Abstract

Cited by 78 (0 self)
 Add to MetaCart
(Show Context)
We introduce a new method to optimize the required area, minimum angle and number of bends of planar drawings of graphs on a grid. The main tool is a new type of ordering on the vertices and faces of triconnected planar graphs. Using this method linear time and space algorithms can be designed for many graph drawing problems.  Every triconnected planar graph G can be drawn convexly with straight lines on an (2n \Gamma 4) \Theta (n \Gamma 2) grid, where n is the number of vertices.  Every triconnected planar graph with maximum degree four can be drawn orthogonally on an n \Theta n grid with at most d 3n 2 e + 4, and if n ? 6 then every edge has at most two bends.  Every 3planar graph G can be drawn with at most b n 2 c + 1 bends on an b n 2 c \Theta b n 2 c grid.  Every triconnected planar graph G can be drawn planar on an (2n \Gamma 6) \Theta (3n \Gamma 9) grid with minimum angle larger than 2 d radians and at most 5n \Gamma 15 bends, with d the maximum d...
A Lineartime Algorithm for Drawing a Planar Graph on a Grid
 Information Processing Letters
, 1989
"... We present a lineartime algorithm that, given an nvertex planar graph G, finds an embedding of G into a (2n \Gamma 4) \Theta (n \Gamma 2) grid such that the edges of G are straightline segments. 1 Introduction We consider the problem of embedding the vertices of a planar graph into a small grid i ..."
Abstract

Cited by 46 (5 self)
 Add to MetaCart
We present a lineartime algorithm that, given an nvertex planar graph G, finds an embedding of G into a (2n \Gamma 4) \Theta (n \Gamma 2) grid such that the edges of G are straightline segments. 1 Introduction We consider the problem of embedding the vertices of a planar graph into a small grid in the plane in such a way that the edges are straight, nonintersecting line segments. The existence of such straightline embeddings for planar graphs was independently discovered by F'ary [Fa48], Stein [St51], and Wagner [Wa36]; this result also follows from Steinitz's theorem on convex polytopes in three dimensions [SR34]. The first algorithms for constructing straightline embeddings [Tu63, CYN84, CON85] required highprecision arithmetic, and the resulting drawings were not very aesthetic, since they tend to produce uneven distributions of vertices over the drawing area. Rosenstiehl and Tarjan [RT86] noticed that it would be convenient to be able to map veritices of a planar graph into a...
On Simultaneous Planar Graph Embeddings
 COMPUT. GEOM
, 2003
"... We consider the problem of simultaneous embedding of planar graphs. There are two variants ..."
Abstract

Cited by 39 (8 self)
 Add to MetaCart
(Show Context)
We consider the problem of simultaneous embedding of planar graphs. There are two variants
MinimumWidth Grid Drawings of Plane Graphs
 Graph Drawing (Proc. GD '94), volume 894 of Lecture Notes in Computer Science
, 1995
"... Given a plane graph G, we wish to draw it in the plane in such a way that the vertices of G are represented as grid points, and the edges are represented as straightline segments between their endpoints. An additional objective is to minimize the size of the resulting grid. It is known that each pl ..."
Abstract

Cited by 32 (12 self)
 Add to MetaCart
Given a plane graph G, we wish to draw it in the plane in such a way that the vertices of G are represented as grid points, and the edges are represented as straightline segments between their endpoints. An additional objective is to minimize the size of the resulting grid. It is known that each plane graph can be drawn in such a way in a (n \Gamma 2) \Theta (n \Gamma 2) grid (for n 3), and that no grid smaller than (2n=3 \Gamma 1) \Theta (2n=3 \Gamma 1) can be used for this purpose, if n is a multiple of 3. In fact, for all n 3, each dimension of the resulting grid needs to be at least b2(n \Gamma 1)=3c, even if the other one is allowed to be unbounded. In this paper we show that this bound is tight by presenting a grid drawing algorithm that produces drawings of width b2(n \Gamma 1)=3c. The height of the produced drawings is bounded by 4b2(n \Gamma 1)=3c \Gamma 1. Our algorithm runs in linear time and is easy to implement. 1 Introduction The problem of automatic graph drawing ha...
Planar Polyline Drawings with Good Angular Resolution
 Graph Drawing (Proc. GD '98), volume 1547 of LNCS
, 1998
"... . We present a linear time algorithm that constructs a planar polyline grid drawing of any plane graph with n vertices and maximum degree d on a (2n \Gamma 5) \Theta ( 3 2 n \Gamma 7 2 ) grid with at most 5n \Gamma 15 bends and minimum angle ? 2 d . In the constructed drawings, every edge h ..."
Abstract

Cited by 32 (1 self)
 Add to MetaCart
(Show Context)
. We present a linear time algorithm that constructs a planar polyline grid drawing of any plane graph with n vertices and maximum degree d on a (2n \Gamma 5) \Theta ( 3 2 n \Gamma 7 2 ) grid with at most 5n \Gamma 15 bends and minimum angle ? 2 d . In the constructed drawings, every edge has at most three bends and length O(n). To our best knowledge, this algorithm achieves the best simultaneous bounds concerning the grid size, angular resolution, and number of bends for planar grid drawings of highdegree planar graphs. Besides the nice theoretical features, the practical drawings are aesthetically very pleasing. An implementation of our algorithm is available with the AGDLibrary (Algorithms for Graph Drawing) [2, 1]. Our algorithm is based on ideas by Kant for polyline grid drawings for triconnected plane graphs [23]. In particular, our algorithm significantly improves upon his bounds on the angular resolution and the grid size for nontriconnected plane graphs....
Convex Drawings of Graphs in Two and Three Dimensions
, 1996
"... We provide O(n)time algorithms for constructing the following types of drawings of nvertex 3connected planar graphs: ffl 2D convex grid drawings with (3n) × (3n/2) area under the edge L 1 resolution rule; ffl 2D strictly convex grid drawings with O(n³) × O(n³) area under the edge resolution ru ..."
Abstract

Cited by 31 (10 self)
 Add to MetaCart
We provide O(n)time algorithms for constructing the following types of drawings of nvertex 3connected planar graphs: ffl 2D convex grid drawings with (3n) × (3n/2) area under the edge L 1 resolution rule; ffl 2D strictly convex grid drawings with O(n³) × O(n³) area under the edge resolution rule; ffl 2D strictly convex drawings with O(1) × O(n) area under the vertexresolution rule, and with vertex coordinates represented by O(n log n)bit rational numbers; ffl 3D convex drawings with O(1) × O(1) × O(n) volume under the vertexresolution rule, and with vertex coordinates represented by O(n log n)bit rational numbers. We also
Strictly Convex Drawings of Planar Graphs
, 2004
"... Every threeconnected planar graph with n vertices has a drawing on an O(n7=3) \Theta O(n7=3) grid in which all faces are strictly convex polygons. ..."
Abstract

Cited by 28 (1 self)
 Add to MetaCart
Every threeconnected planar graph with n vertices has a drawing on an O(n7=3) \Theta O(n7=3) grid in which all faces are strictly convex polygons.
Simultaneous embedding of a planar graph and its dual on the grid
, 2002
"... Abstract. Traditional representations of graphs and their duals suggest the requirement that the dual vertices be placed inside their corresponding primal faces, and the edges of the dual graph cross only their corresponding primal edges. We consider the problem of simultaneously embedding a planar ..."
Abstract

Cited by 19 (10 self)
 Add to MetaCart
(Show Context)
Abstract. Traditional representations of graphs and their duals suggest the requirement that the dual vertices be placed inside their corresponding primal faces, and the edges of the dual graph cross only their corresponding primal edges. We consider the problem of simultaneously embedding a planar graph and its dual into a small integer grid such that the edges are drawn as straightline segments and the only crossings are between primaldual pairs of edges. We provide a lineartime algorithm that simultaneously embeds a 3connected planar graph and its dual on a (2n −2) ×(2n −2) integer grid, where n is the total number of vertices in the graph and its dual. Furthermore our embedding algorithm satisfies the two natural requirements mentioned above.
Convex drawings of 3connected plane graphs
 Algorithmica
, 2007
"... We use Schnyder woods of 3connected planar graphs to produce convex straight line drawings on a grid of size (n − 2 − ∆) × (n − 2 − ∆). The parameter ∆ ≥ 0 depends on the Schnyder wood used for the drawing. This parameter is in the range 0 ≤ ∆ ≤ n 2 − 2. The algorithm is a refinement of the fac ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
(Show Context)
We use Schnyder woods of 3connected planar graphs to produce convex straight line drawings on a grid of size (n − 2 − ∆) × (n − 2 − ∆). The parameter ∆ ≥ 0 depends on the Schnyder wood used for the drawing. This parameter is in the range 0 ≤ ∆ ≤ n 2 − 2. The algorithm is a refinement of the facecountingalgorithm, thus, in particular, the size of the grid is at most (f − 2) × (f − 2). The above bound on the grid size simultaneously matches or improves all previously known bounds for convex drawings, in particular Schnyder’s and the recent Zhang and He bound for triangulations and the Chrobak and Kant bound for 3connected planar graphs. The algorithm takes linear time. The drawing algorithm has been implemented and tested. The expected grid size for the drawing of a random triangulation is close to 7 7
Drawing Planar Partitions I: LLDrawings and LHDrawings
, 1998
"... Let a planar graph G = (V; E) and a partition V = A[B of the vertices be given. Can we draw G without edge crossings such that the partition is clearly visible? Such drawings aid to display partitions and cuts as they arise in various applications. In this paper, we first review a number of mode ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
Let a planar graph G = (V; E) and a partition V = A[B of the vertices be given. Can we draw G without edge crossings such that the partition is clearly visible? Such drawings aid to display partitions and cuts as they arise in various applications. In this paper, we first review a number of models of displaying the partition. Studying two of these models in detail, we provide necessary and sufficient conditions for the existence of a straightline planar drawing, and algorithms to create such drawings, if possible, with area O(n²).