Results 1  10
of
34
Notions of Computation and Monads
, 1991
"... The i.calculus is considered a useful mathematical tool in the study of programming languages, since programs can be identified with Iterms. However, if one goes further and uses bnconversion to prove equivalence of programs, then a gross simplification is introduced (programs are identified with ..."
Abstract

Cited by 734 (15 self)
 Add to MetaCart
The i.calculus is considered a useful mathematical tool in the study of programming languages, since programs can be identified with Iterms. However, if one goes further and uses bnconversion to prove equivalence of programs, then a gross simplification is introduced (programs are identified with total functions from calues to values) that may jeopardise the applicability of theoretical results, In this paper we introduce calculi. based on a categorical semantics for computations, that provide a correct basis for proving equivalence of programs for a wide range of notions of computation.
Computational LambdaCalculus and Monads
, 1988
"... The calculus is considered an useful mathematical tool in the study of programming languages, since programs can be identified with terms. However, if one goes further and uses fijconversion to prove equivalence of programs, then a gross simplification 1 is introduced, that may jeopardise the ..."
Abstract

Cited by 445 (6 self)
 Add to MetaCart
The calculus is considered an useful mathematical tool in the study of programming languages, since programs can be identified with terms. However, if one goes further and uses fijconversion to prove equivalence of programs, then a gross simplification 1 is introduced, that may jeopardise the applicability of theoretical results to real situations. In this paper we introduce a new calculus based on a categorical semantics for computations. This calculus provides a correct basis for proving equivalence of programs, independent from any specific computational model. 1 Introduction This paper is about logics for reasoning about programs, in particular for proving equivalence of programs. Following a consolidated tradition in theoretical computer science we identify programs with the closed terms, possibly containing extra constants, corresponding to some features of the programming language under consideration. There are three approaches to proving equivalence of programs: ffl T...
The Lazy Lambda Calculus
 Research Topics in Functional Programming
, 1990
"... Introduction The commonly accepted basis for functional programming is the calculus; and it is folklore that the calculus is the prototypical functional language in puri ed form. But what is the calculus? The syntax is simple and classical; variables, abstraction and application in the pure cal ..."
Abstract

Cited by 239 (3 self)
 Add to MetaCart
Introduction The commonly accepted basis for functional programming is the calculus; and it is folklore that the calculus is the prototypical functional language in puri ed form. But what is the calculus? The syntax is simple and classical; variables, abstraction and application in the pure calculus, with applied calculi obtained by adding constants. The further elaboration of the theory, covering conversion, reduction, theories and models, is laid out in Barendregt's already classical treatise [Bar84]. It is instructive to recall the following crux, which occurs rather early in that work (p. 39): Meaning of terms: rst attempt The meaning of a term is its normal form (if it exists). All terms without normal forms are identi ed. This proposal incorporates such a simple and natural interpretation of the calculus as
Syntactic considerations on recursive types
 In Proceedings of the 11th Annual Symposium on Logic in Computer Science
, 1996
"... Abstract We study recursive types from a syntactic perspective. In particular, we compare the formulations of recursive types that are used in programming languages and formal systems. Our main tool is a new syntactic explanation of type expressions as functors. We also introduce a simple logic for ..."
Abstract

Cited by 32 (0 self)
 Add to MetaCart
Abstract We study recursive types from a syntactic perspective. In particular, we compare the formulations of recursive types that are used in programming languages and formal systems. Our main tool is a new syntactic explanation of type expressions as functors. We also introduce a simple logic for programs with recursive types in which we carry out our proofs. 1 Introduction Recursive types are common in both programming languages and formal systems. By now, there is a deep and welldeveloped semantic theory of recursive types. The syntactic aspects of recursive types are also well understood in some special cases. In particular, there is an important body of knowledge about covariant recursive types, which include datatypes like natural numbers, lists, and trees. Beyond the covariant case, however, the syntactic understanding of recursive types becomes rather spotty. Consequently, the relations between various alternative formulations of recursive types are generally unclear. Furthermore, the syntactic counterparts to some of the most basic semantic results are unknown.
Deliverables: A Categorical Approach to Program Development in Type Theory
, 1992
"... This thesis considers the problem of program correctness within a rich theory of dependent types, the Extended Calculus of Constructions (ECC). This system contains a powerful programming language of higherorder primitive recursion and higherorder intuitionistic logic. It is supported by Pollack&a ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
This thesis considers the problem of program correctness within a rich theory of dependent types, the Extended Calculus of Constructions (ECC). This system contains a powerful programming language of higherorder primitive recursion and higherorder intuitionistic logic. It is supported by Pollack's versatile LEGO implementation, which I use extensively to develop the mathematical constructions studied here. I systematically investigate Burstall's notion of deliverable, that is, a program paired with a proof of correctness. This approach separates the concerns of programming and logic, since I want a simple program extraction mechanism. The \Sigmatypes of the calculus enable us to achieve this. There are many similarities with the subset interpretation of MartinLof type theory. I show that deliverables have a rich categorical structure, so that correctness proofs may be decomposed in a principled way. The categorical combinators which I define in the system package up much logical bo...
From Total Equational to Partial First Order Logic
, 1998
"... The focus of this chapter is the incremental presentation of partial firstorder logic, seen as a powerful framework where the specification of most data types can be directly represented in the most natural way. Both model theory and logical deduction are described in full detail. Alternatives to pa ..."
Abstract

Cited by 19 (8 self)
 Add to MetaCart
The focus of this chapter is the incremental presentation of partial firstorder logic, seen as a powerful framework where the specification of most data types can be directly represented in the most natural way. Both model theory and logical deduction are described in full detail. Alternatives to partiality, like (variants of) error algebras and ordersortedness are also discussed, showing their uses and limitations. Moreover, both the total and the partial (positive) conditional fragment are investigated in detail, and in particular the existence of initial (free) models for such restricted logical paradigms is proved. Some more powerful algebraic frameworks are sketched at the end. Equational specifications introduced in last chapter, are a powerful tool to represent the most common data types used in programming languages and their semantics. Indeed, Bergstra and Tucker have shown in a series of papers (see [BT87] for a complete exposition of results) that a data type is semicompu...
Lambda Logic
 Automated Reasoning: Second International Joint Conference, IJCAR 2004
, 2004
"... Lambda logic is the union of first order logic and lambda calculus. We prove basic metatheorems for both total and partial versions of lambda logic. We use lambda logic to state and prove a soundness theorem allowing the use of second order unification in resolution, demodulation, and paramodulation ..."
Abstract

Cited by 11 (5 self)
 Add to MetaCart
Lambda logic is the union of first order logic and lambda calculus. We prove basic metatheorems for both total and partial versions of lambda logic. We use lambda logic to state and prove a soundness theorem allowing the use of second order unification in resolution, demodulation, and paramodulation in a firstorder context.
Categorical Completeness Results for the SimplyTyped LambdaCalculus
 Proceedings of TLCA '95, Springer LNCS 902
, 1995
"... . We investigate, in a categorical setting, some completeness properties of betaeta conversion between closed terms of the simplytyped lambda calculus. A cartesianclosed category is said to be complete if, for any two unconvertible terms, there is some interpretation of the calculus in the catego ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
. We investigate, in a categorical setting, some completeness properties of betaeta conversion between closed terms of the simplytyped lambda calculus. A cartesianclosed category is said to be complete if, for any two unconvertible terms, there is some interpretation of the calculus in the category that distinguishes them. It is said to have a complete interpretation if there is some interpretation that equates only interconvertible terms. We give simple necessary and sufficient conditions on the category for each of the two forms of completeness to hold. The classic completeness results of, e.g., Friedman and Plotkin are immediate consequences. As another application, we derive a syntactic theorem of Statman characterizing betaeta conversion as a maximum consistent congruence relation satisfying a property known as typical ambiguity. 1 Introduction In 1970 Friedman proved that betaeta conversion is complete for deriving all equalities between the (simplytyped) lambdadefinable...