Results 11  20
of
160
DecisionTheoretic Foundations for Causal Reasoning
 Journal of Artificial Intelligence Research
, 1995
"... We present a definition of cause and effect in terms of decisiontheoretic primitives and thereby provide a principled foundation for causal reasoning. Our definition departs from the traditional view of causation in that causal assertions may vary with the set of decisions available. We argue that ..."
Abstract

Cited by 54 (8 self)
 Add to MetaCart
We present a definition of cause and effect in terms of decisiontheoretic primitives and thereby provide a principled foundation for causal reasoning. Our definition departs from the traditional view of causation in that causal assertions may vary with the set of decisions available. We argue that this approach provides added clarity to the notion of cause. Also in this paper, we examine the encoding of causal relationships in directed acyclic graphs. We describe a special class of influence diagrams, those in canonical form, and show its relationship to Pearl's representation of cause and effect. Finally, we show how canonical form facilitates counterfactual reasoning. 1. Introduction Knowledge of cause and effect is crucial for modeling the affects of actions. For example, if we observe a statistical correlation between smoking and lung cancer, we can not conclude from this observation alone that our chances of getting lung cancer will change if we stop smoking. If, however, we als...
Axioms of Causal Relevance
 Artificial Intelligence
, 1996
"... This paper develops axioms and formal semantics for statements of the form "X is causally irrelevant to Y in context Z," which we interpret to mean "Changing X will not affect Y if we hold Z constant." The axiomization of causal irrelevance is contrasted with the axiomization of informational irr ..."
Abstract

Cited by 54 (15 self)
 Add to MetaCart
This paper develops axioms and formal semantics for statements of the form "X is causally irrelevant to Y in context Z," which we interpret to mean "Changing X will not affect Y if we hold Z constant." The axiomization of causal irrelevance is contrasted with the axiomization of informational irrelevance, as in "Learning X will not alter our belief in Y , once we know Z." Two versions of causal irrelevance are analyzed, probabilistic and deterministic. We show that, unless stability is assumed, the probabilistic definition yields a very loose structure, that is governed by just two trivial axioms. Under the stability assumption, probabilistic causal irrelevance is isomorphic to path interception in cyclic graphs. Under the deterministic definition, causal irrelevance complies with all of the axioms of path interception in cyclic graphs, with the exception of transitivity. We compare our formalism to that of [Lewis, 1973], and offer a graphical method of proving theorems abou...
Chain Graph Models and their Causal Interpretations
 B
, 2001
"... Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultim ..."
Abstract

Cited by 48 (4 self)
 Add to MetaCart
Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultimately fallacious interpretations of chain graphs that are often invoked, implicitly or explicitly. These interpretations also lead to awed methods for applying background knowledge to model selection. We present a valid interpretation by showing how the distribution corresponding to a chain graph may be generated as the equilibrium distribution of dynamic models with feedback. These dynamic interpretations lead to a simple theory of intervention, extending the theory developed for DAGs. Finally, we contrast chain graph models under this interpretation with simultaneous equation models which have traditionally been used to model feedback in econometrics. Keywords: Causal model; cha...
Learning Probabilistic Networks
 THE KNOWLEDGE ENGINEERING REVIEW
, 1998
"... A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest. Such a model records qualitative influences between variables in addition to the numerical parameters of the probability distribution. As such it provides an ideal form for combini ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
A probabilistic network is a graphical model that encodes probabilistic relationships between variables of interest. Such a model records qualitative influences between variables in addition to the numerical parameters of the probability distribution. As such it provides an ideal form for combining prior knowledge, which might be limited solely to experience of the influences between some of the variables of interest, and data. In this paper, we first show how data can be used to revise initial estimates of the parameters of a model. We then progress to showing how the structure of the model can be revised as data is obtained. Techniques for learning with incomplete data are also covered.
Direct and indirect causal effects via potential outcomes
 Scandinavian Journal of Statistics
, 2004
"... ABSTRACT. The use of the concept of ‘direct ’ versus ‘indirect ’ causal effects is common, not only in statistics but also in many areas of social and economic sciences. The related terms of ‘biomarkers’ and ‘surrogates ’ are common in pharmacological and biomedical sciences. Sometimes this concept ..."
Abstract

Cited by 36 (1 self)
 Add to MetaCart
ABSTRACT. The use of the concept of ‘direct ’ versus ‘indirect ’ causal effects is common, not only in statistics but also in many areas of social and economic sciences. The related terms of ‘biomarkers’ and ‘surrogates ’ are common in pharmacological and biomedical sciences. Sometimes this concept is represented by graphical displays of various kinds. The view here is that there is a great deal of imprecise discussion surroundingthis topic and, moreover, that the most straightforward way to clarify the situation is by usingpotential outcomes to define causal effects. In particular, I suggest that the use of principal stratification is key to understanding the meaning of direct and indirect causal effects. A current study of anthrax vaccine will be used to illustrate ideas.
An Extended Class of Instrumental Variables for the Estimation of Causal Effects
 UCSD DEPT. OF ECONOMICS DISCUSSION PAPER
, 1996
"... This paper builds on the structural equations, treatment effect, and machine learning literatures to provide a causal framework that permits the identification and estimation of causal effects from observational studies. We begin by providing a causal interpretation for standard exogenous regresso ..."
Abstract

Cited by 32 (13 self)
 Add to MetaCart
This paper builds on the structural equations, treatment effect, and machine learning literatures to provide a causal framework that permits the identification and estimation of causal effects from observational studies. We begin by providing a causal interpretation for standard exogenous regressors and standard “valid” and “relevant” instrumental variables. We then build on this interpretation to characterize extended instrumental variables (EIV) methods, that is methods that make use of variables that need not be valid instruments in the standard sense, but that are nevertheless instrumental in the recovery of causal effects of interest. After examining special cases of single and double EIV methods, we provide necessary and sufficient conditions for the identification of causal effects by means of EIV and provide consistent and asymptotically normal estimators for the effects of interest.
Causal Inference in the Presence of Latent Variables and Selection Bias
 In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence
"... This paper uses Bayesian network models for that investigation. Bayesian networks, or directed acyclic graph (DAG) models have proved very useful in representing both causal and statistical hypotheses. The nodes of the graph represent vertices, directed edges represent direct influences, and the top ..."
Abstract

Cited by 28 (4 self)
 Add to MetaCart
This paper uses Bayesian network models for that investigation. Bayesian networks, or directed acyclic graph (DAG) models have proved very useful in representing both causal and statistical hypotheses. The nodes of the graph represent vertices, directed edges represent direct influences, and the topology of the graph encodes statistical constraints. We will consider features of such models that can be determined from data under assumptions that are related to those routinely applied in experimental situations:
A simple constraintbased algorithm for efficiently mining observational databases for causal relationships
 Data Mining and Knowledge Discovery
, 1997
"... Abstract. This paper presents a simple, efficient computerbased method for discovering causal relationships from databases that contain observational data. Observational data is passively observed, as contrasted with experimental data. Most of the databases available for data mining are observation ..."
Abstract

Cited by 28 (2 self)
 Add to MetaCart
Abstract. This paper presents a simple, efficient computerbased method for discovering causal relationships from databases that contain observational data. Observational data is passively observed, as contrasted with experimental data. Most of the databases available for data mining are observational. There is great potential for mining such databases to discover causal relationships. We illustrate how observational data can constrain the causal relationships among measured variables, sometimes to the point that we can conclude that one variable is causing another variable. The presentation here is based on a constraintbased approach to causal discovery. A primary purpose of this paper is to present the constraintbased causal discovery method in the simplest possible fashion in order to (1) readily convey the basic ideas that underlie more complex constraintbased causal discovery techniques, and (2) permit interested readers to rapidly program and apply the method to their own databases, as a start toward using more elaborate causal discovery algorithms.
Causal Inference for Complex Longitudinal Data: the continuous case
 Annals of Statistics
, 2001
"... this paper we consider two fundamental issues concerning Robins' theory. Firstly, do his assumed relations (between observed and unobservedfactual and counterfactualrandom variables) place restrictions on the distribution of the observed variables. If the answer is yes, adopting his approach m ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
this paper we consider two fundamental issues concerning Robins' theory. Firstly, do his assumed relations (between observed and unobservedfactual and counterfactualrandom variables) place restrictions on the distribution of the observed variables. If the answer is yes, adopting his approach means making restrictive implicit assumptionsnot very desirable. If however the answer is no, his approach is neutral. One can freely use it in modelling and estimation, exploring the consequences (for the unobserved variables) of the model. This follows the highly succesful tradition in all sciences of making thought experiments. In what philosophical sense counterfactuals actually exist seems to us less relevant. But it is important to know if a certain thought experiment is a priori ruled out by existing data