Results 1 
8 of
8
ParameterPassing and the Lambda Calculus
, 1991
"... The choice of a parameterpassing technique is an important decision in the design of a highlevel programming language. To clarify some of the semantic aspects of the decision, we develop, analyze, and compare modifications of the calculus for the most common parameterpassing techniques, i.e., ca ..."
Abstract

Cited by 186 (23 self)
 Add to MetaCart
The choice of a parameterpassing technique is an important decision in the design of a highlevel programming language. To clarify some of the semantic aspects of the decision, we develop, analyze, and compare modifications of the calculus for the most common parameterpassing techniques, i.e., callbyvalue and callbyname combined with passbyworth and passby reference, respectively. More specifically, for each parameterpassing technique we provide 1. a program rewriting semantics for a language with sideeffects and firstclass procedures based on the respective parameterpassing technique; 2. an equational theory that is derived from the rewriting semantics in a uniform manner; 3. a formal analysis of the correspondence between the calculus and the semantics; and 4. a strong normalization theorem for the imperative fragment of the theory (when applicable). A comparison of the various systems reveals that Algol's callbyname indeed satisfies the wellknown fi rule of the orig...
Equivalence in Functional Languages with Effects
, 1991
"... Traditionally the view has been that direct expression of control and store mechanisms and clear mathematical semantics are incompatible requirements. This paper shows that adding objects with memory to the callbyvalue lambda calculus results in a language with a rich equational theory, satisfying ..."
Abstract

Cited by 112 (13 self)
 Add to MetaCart
Traditionally the view has been that direct expression of control and store mechanisms and clear mathematical semantics are incompatible requirements. This paper shows that adding objects with memory to the callbyvalue lambda calculus results in a language with a rich equational theory, satisfying many of the usual laws. Combined with other recent work this provides evidence that expressive, mathematically clean programming languages are indeed possible. 1. Overview Real programs have effectscreating new structures, examining and modifying existing structures, altering flow of control, etc. Such facilities are important not only for optimization, but also for communication, clarity, and simplicity in programming. Thus it is important to be able to reason both informally and formally about programs with effects, and not to sweep effects either to the side or under the store parameter rug. Recent work of Talcott, Mason, Felleisen, and Moggi establishes a mathematical foundation for...
Inferring the Equivalence of Functional Programs that Mutate Data
 Theoretical Computer Science
, 1992
"... this paper we study the constrained equivalence of programs with effects. In particular, we present a formal system for deriving such equivalences. Constrained equivalence is defined via a model theoretic characterization of operational, or observational, equivalence called strong isomorphism. Opera ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
this paper we study the constrained equivalence of programs with effects. In particular, we present a formal system for deriving such equivalences. Constrained equivalence is defined via a model theoretic characterization of operational, or observational, equivalence called strong isomorphism. Operational equivalence, as introduced by Morris [23] and Plotkin [27], treats programs as black boxes. Two expressions are operationally equivalent if they are indistinguishable in all program contexts. This equivalence is the basis for soundness results for program calculi and program transformation theories. Strong isomorphism, as introduced by Mason [14], also treats programs as black boxes. Two expressions are strongly isomorphic if in all memory states they return the same value, and have the same effect on memory (modulo the production of garbage). Strong isomorphism implies operational equivalence. The converse is true for firstorder languages; it is false for full higherorder languages. However, even in the higherorder case, it remains an useful tool for establishing equivalence. Since strong isomorphism is defined by quantifying over memory states, rather than program contexts, it is a simple matter to restrict this equivalence to those memory states which satisfy a set of constraints. It is for this reason that strong isomorphism is a useful relation, even in the higherorder case. The formal system we present defines a singleconclusion consequence relation \Sigma ` \Phi where \Sigma is a finite set of constraints and \Phi is an assertion. The semantics of the formal system is given by a semantic consequence relation, \Sigma j= \Phi, defined in terms of a class of memory models for assertions and constraints. The assertions we consider are of the following two forms...
Reasoning about Functions with Effects
 See Gordon and Pitts
, 1997
"... ing and using (Lunif) we have that any two lambdas that are everywhere undefined are equivalent. The classic example of an everywhere undefined lambda is Bot 4 = x:app(x:app(x; x); x:app(x; x)) In f , another example of an everywhere undefined lambda is the "doforever" loop. Do 4 = f:Yv(Dox ..."
Abstract

Cited by 13 (1 self)
 Add to MetaCart
ing and using (Lunif) we have that any two lambdas that are everywhere undefined are equivalent. The classic example of an everywhere undefined lambda is Bot 4 = x:app(x:app(x; x); x:app(x; x)) In f , another example of an everywhere undefined lambda is the "doforever" loop. Do 4 = f:Yv(Dox:Do(f(x)) By the recursive definition, for any lambda ' and value v Do(')(v) \Gamma!Ø Do(')('(v)) Reasoning about Functions with Effects 21 In f , either '(v) \Gamma!Ø v 0 for some v 0 or '(v) is undefined. In the latter case the computation is undefined since the redex is undefined. In the former case, the computation reduces to Do(')(v 0 ) and on we go. The argument for undefinedness of Bot relies only on the (app) rule and will be valid in any uniform semantics. In contrast the argument for undefinedness of Do(') relies on the (fred.isdef) property of f . Functional Streams We now illustrate the use of (Lunifsim) computation to reason about streams represented as functions ...
DependenceBased Representations for Programs with Reference Variables
, 1991
"... Three features common to modem programming languages are popular because they simplify the development of efficient programs. The first, the assignment statement, allows the components of a data structure to be redefined as a computation progresses. The second, dynamic allocation, allows memory for ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
Three features common to modem programming languages are popular because they simplify the development of efficient programs. The first, the assignment statement, allows the components of a data structure to be redefined as a computation progresses. The second, dynamic allocation, allows memory for data structures to be acquixed, destroyed, and reused at need. The third, the reference (i.e., pointer) variable, allows multiple data structures to share a common substructure. These three features, unfortunately, make it difficult to estimate program behavior at compiletime. Such estimates play a crucial role in the (automatic) improvement, modification, and reuse of existing software. The first part of this thesis develops...
A First Order Logic of Effects
 Theoretical Computer Science
, 1996
"... In this paper we describe some of our progress towards an operational implementation of a modern programming logic. The logic is inspired by the variable type systems of Feferman, and is designed for reasoning about imperative functional programs. The logic goes well beyond traditional programming l ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
In this paper we describe some of our progress towards an operational implementation of a modern programming logic. The logic is inspired by the variable type systems of Feferman, and is designed for reasoning about imperative functional programs. The logic goes well beyond traditional programming logics, such as Hoare's logic and Dynamic logic in its expressibility, yet is less problematic to encode into higher order logics. The main focus of the paper is too present an axiomatization of the base first order theory. 1 Introduction VTLoE [34, 23, 35, 37, 24] is a logic for reasoning about imperative functional programs, inspired by the variable type systems of Feferman. These systems are two sorted theories of operations and classes initially developed for the formalization of constructive mathematics [12, 13] and later applied to the study of purely functional languages [14, 15]. VTLoE builds upon recent advances in the semantics of languages with effects [16, 19, 28, 32, 33] and go...
Mathematical and Engineering Foundations for Interoperability via Architecture
, 1998
"... Data Type Specification, in combination with modal logics for formalizing the process of building systems from interconnected components. This combination of logical and categorical techniques has also been applied to parallel program design languages in the style of UNITY [14] and IP [41], providin ..."
Abstract
 Add to MetaCart
Data Type Specification, in combination with modal logics for formalizing the process of building systems from interconnected components. This combination of logical and categorical techniques has also been applied to parallel program design languages in the style of UNITY [14] and IP [41], providing semantics for modularization techniques based on the notion of superposition. This has resulted in the development of a programming design language called Community [33]. Two formalisms that provide explicit support for object systems and can reason about their rewriting logic specifications have been recently developed. One is a version of the modal calculus proposed by Lechner [48, 49] for reasoning about objectoriented Maude specifications. Another is Denker's objectoriented distributed temporal logic DTL + [24, 22], that extends the DTL and D 1 distributed object temporal logics of Ehrich and Denker [30, 23, 29]. Lechner [48, 49] uses her version of the modal calculus to identif...
Copyright C
"... Traditionally the view has been that direct expression of control and store mechanisms and clear mathematical semantics are incompatible requirements. This paper shows that adding objects with memory to the callbyvalue lambda calculus results in a language with a rich equational theory, satisfying ..."
Abstract
 Add to MetaCart
Traditionally the view has been that direct expression of control and store mechanisms and clear mathematical semantics are incompatible requirements. This paper shows that adding objects with memory to the callbyvalue lambda calculus results in a language with a rich equational theory, satisfying many of the usual laws. Combined with other recent work this provides evidence that expressive, mathematically clean programming languages are indeed possible. 1. Overview Real programs have effectscreating new structures, examining and modifying existing structures, altering flow of control, etc. Such facilities are important not only for optimization, but also for communication, clarity, and simplicity in programming. Thus it is important to be able to reason both informally and formally about programs with effects, and not to sweep effects either to the side or under the store parameter rug. Recent work of Talcott, Mason, Felleisen, and Moggi establishes a mathematical foundation for...