Results 11  20
of
162
Deciding Containment for Queries with Complex Objects and Aggregations
, 1997
"... We address the problem of query containment and query equivalence for complex objects. We show that for a certain conjunctive query language for complex objects, query containment and weak query equivalence are decidable. Our results have two consequences. First, when the answers of the two queries ..."
Abstract

Cited by 46 (7 self)
 Add to MetaCart
We address the problem of query containment and query equivalence for complex objects. We show that for a certain conjunctive query language for complex objects, query containment and weak query equivalence are decidable. Our results have two consequences. First, when the answers of the two queries are guaranteed not to contain empty sets, then weak equivalence coincides with equivalence, and our result answers partially an open problem about the equivalence of nest; unnest queries for complex objects [GPG90]. Second, we derive an NPcomplete algorithm for checking the equivalence of certain conjunctive queries with grouping and aggregates. Our results rely on a translation of the containment and equivalence conditions for complex objects into novel conditions on conjunctive queries, which we call simulation and strong simulation. These conditions are more complex than containment of conjunctive queries, because they involve arbitrary numbers of quantifier alternations. We prove that c...
Type Dependencies for Logic Programs using ACIunification
 In Proceedings of the 1996 Israeli Symposium on Theory of Computing and Systems
, 1996
"... This paper presents a new notion of typing for logic programs which generalizes the notion of directional types. The generation of type dependencies for a logic program is fully automatic with respect to a given domain of types. The analysis method is based on a novel combination of program abstract ..."
Abstract

Cited by 44 (8 self)
 Add to MetaCart
(Show Context)
This paper presents a new notion of typing for logic programs which generalizes the notion of directional types. The generation of type dependencies for a logic program is fully automatic with respect to a given domain of types. The analysis method is based on a novel combination of program abstraction and ACIunification which is shown to be correct and optimal. Type dependencies are obtained by abstracting programs, replacing concrete terms by their types, and evaluating the meaning of the abstract programs using a standard semantics for logic programs enhanced by ACIunification. This approach is generic and can be used with any standard semantics. The method is both theoretically clean and easy to implement using general purpose tools. The proposed domain of types is condensing which means that analyses can be carried out in both topdown or bottomup frameworks with no loss of precision for goalindependent analyses. The proposed method has been fully implemented within a bottomup approach and the experimental results are promising.
Operational Properties of Lily, a Polymorphic Linear Lambda Calculus with Recursion
"... Plotkin has advocated the combination of linear lambda calculus, polymorphism and fixed point recursion as an expressive semantic metalanguage. We study its expressive power from an operational point of view. We show that the naturally callbyvalue operators of linear lambda calculus can be given a ..."
Abstract

Cited by 44 (1 self)
 Add to MetaCart
(Show Context)
Plotkin has advocated the combination of linear lambda calculus, polymorphism and fixed point recursion as an expressive semantic metalanguage. We study its expressive power from an operational point of view. We show that the naturally callbyvalue operators of linear lambda calculus can be given a callbyname semantics without affecting termination at exponential types and hence without affecting ground contextual equivalence. This result is used to prove properties of a logical relation that provides a new extensional characterisation of ground contextual equivalence and relational parametricity properties of polymorphic types.
Domain theoretic models of polymorphism
 INF. COMPUT
, 1989
"... We give an illustration of a construction useful in producing and describing models of Girard and Reynolds' polymorphic λcalculus. The key unifying ideas are that of a Grothendieck fibration and the category of continuous sections associated with it, constructions used in indexed category theo ..."
Abstract

Cited by 35 (2 self)
 Add to MetaCart
We give an illustration of a construction useful in producing and describing models of Girard and Reynolds' polymorphic λcalculus. The key unifying ideas are that of a Grothendieck fibration and the category of continuous sections associated with it, constructions used in indexed category theory; the universal types of the calculus are interpreted as the category of continuous sections of the fibration. As a major example a new model for the polymorphic λcalculus is presented. In it a type is interpreted as a Scott domain. In fact, understanding universal types of the polymorphic λcalculus as categories of continuous sections appears to be useful generally. For example, the technique also applies to the finitary projection model of Bruce and Longo, and a recent model of Girard. (Indeed the work here was inspired by Girard's and arose through trying to extend the construction of his model to Scott domains.) It is hoped that by pinpointing a key construction this paper will help towards a deeper understanding of models for the polymorphic λcalculus and the
Feature Logics
 HANDBOOK OF LOGIC AND LANGUAGE, EDITED BY VAN BENTHEM & TER MEULEN
, 1994
"... Feature logics form a class of specialized logics which have proven especially useful in classifying and constraining the linguistic objects known as feature structures. Linguistically, these structures have their origin in the work of the Prague school of linguistics, followed by the work of Chom ..."
Abstract

Cited by 34 (0 self)
 Add to MetaCart
Feature logics form a class of specialized logics which have proven especially useful in classifying and constraining the linguistic objects known as feature structures. Linguistically, these structures have their origin in the work of the Prague school of linguistics, followed by the work of Chomsky and Halle in The Sound Pattern of English [16]. Feature structures have been reinvented several times by computer scientists: in the theory of data structures, where they are known as record structures, in artificial intelligence, where they are known as frame or slotvalue structures, in the theory of data bases, where they are called "complex objects", and in computati
Binding Time Analysis: A New PERspective
 In Proceedings of the ACM Symposium on Partial Evaluation and SemanticsBased Program Manipulation (PEPM'91
, 1991
"... Given a description of the parameters in a program that will be known at partial evaluation time, a binding time analysis must determine which parts of the program are dependent solely on these known parts (and therefore also known at partial evaluation time). In this paper a binding time analysis f ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
Given a description of the parameters in a program that will be known at partial evaluation time, a binding time analysis must determine which parts of the program are dependent solely on these known parts (and therefore also known at partial evaluation time). In this paper a binding time analysis for the simply typed lambda calculus is presented. The analysis takes the form of an abstract interpretation and uses a novel formalisation of the problem of binding time analysis, based on the use of partial equivalence relations. A simple proof of correctness is achieved by the use of logical relations. 1 Introduction Given a description of the parameters in a program that will be known at partial evaluation time, a binding time analysis must determine which parts of the program are dependent solely on these known parts (and therefore also known at partial evaluation time). A binding time analysis performed prior to the partial evaluation process can have several practical benefits (see [...
Action Structures
, 1992
"... Action structures are proposed as a variety of algebra to underlie concrete models of concurrency and interaction. An action structure is equipped with composition and product of actions, together with two other ingredients: an indexed family of abstractors to allow parametrisation of actions, a ..."
Abstract

Cited by 34 (2 self)
 Add to MetaCart
Action structures are proposed as a variety of algebra to underlie concrete models of concurrency and interaction. An action structure is equipped with composition and product of actions, together with two other ingredients: an indexed family of abstractors to allow parametrisation of actions, and a reaction relation to represent activity. The eight axioms of an action structure make it an enriched strict monoidal category; however, the work is presented algebraically rather than in category theory. The notion of action structure is developed mathematically, and examples are studied ranging from the evaluation of expressions to the statics and dynamics of Petri nets. For algebraic process calculi in particular, it is shown how they may be defined by a uniform superposition of process structure upon an action structure specific to each calculus. This allows a common treatment of bisimulation congruence. The theory of action structures emphasizes the notion of effect; that ...
Computational Comonads and Intensional Semantics
, 1991
"... We explore some foundational issues in the development of a theory of intensional semantics. A programming language may be given a variety of semantics, differing in the level of abstraction; one generally chooses the semantics at an abstraction level appropriate for reasoning about a particular kin ..."
Abstract

Cited by 32 (1 self)
 Add to MetaCart
We explore some foundational issues in the development of a theory of intensional semantics. A programming language may be given a variety of semantics, differing in the level of abstraction; one generally chooses the semantics at an abstraction level appropriate for reasoning about a particular kind of program property. Extensional semantics are typically appropriate for proving properties such as partial correctness, but an intensional semantics at a lower abstraction level is required in order to reason about computation strategy and thereby support reasoning about intensional aspects of behavior such as order of evaluation and efficiency. It is obviously desirable to be able to establish sensible relationships between two semantics for the same language, and we seek a general categorytheoretic framework that permits this. Beginning with an "extensional" category, whose morphisms we can think of as functions of some kind, we model a notion of computation as a comonad with certain e...
Abstract Interpretation of Functional Languages: From Theory to Practice
, 1991
"... Abstract interpretation is the name applied to a number of techniques for reasoning about programs by evaluating them over nonstandard domains whose elements denote properties over the standard domains. This thesis is concerned with higherorder functional languages and abstract interpretations with ..."
Abstract

Cited by 27 (0 self)
 Add to MetaCart
(Show Context)
Abstract interpretation is the name applied to a number of techniques for reasoning about programs by evaluating them over nonstandard domains whose elements denote properties over the standard domains. This thesis is concerned with higherorder functional languages and abstract interpretations with a formal semantic basis. It is known how abstract interpretation for the simply typed lambda calculus can be formalised by using binary logical relations. This has the advantage of making correctness and other semantic concerns straightforward to reason about. Its main disadvantage is that it enforces the identification of properties as sets. This thesis shows how the known formalism can be generalised by the use of ternary logical relations, and in particular how this allows abstract values to deno...