Results 1 
3 of
3
The BoyerMoore Prover and Nuprl: An Experimental Comparison
 LOGICAL FRAMEWORKS
, 1991
"... We use an example to compare the BoyerMoore Theorem Prover and the Nuprl Proof Development System. The respective machine verifications of a version of Ramsey's theorem illustrate similarities and differences between the two systems. The proofs are compared using both quantitative and nonquantitat ..."
Abstract

Cited by 24 (8 self)
 Add to MetaCart
We use an example to compare the BoyerMoore Theorem Prover and the Nuprl Proof Development System. The respective machine verifications of a version of Ramsey's theorem illustrate similarities and differences between the two systems. The proofs are compared using both quantitative and nonquantitative measures, and we examine difficulties in making such comparisons.
Partial computations in constructive type theory
 JOURNAL OF LOGIC AND COMPUTATION
, 1991
"... Constructive type theory as conceived by Per MartinLöf has a very rich type system, but partial functions cannot be typed. This also makes it impossible to directly write recursive programs. In this paper a constructive type theory Red is defined which includes a partial type constructor A; objects ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
Constructive type theory as conceived by Per MartinLöf has a very rich type system, but partial functions cannot be typed. This also makes it impossible to directly write recursive programs. In this paper a constructive type theory Red is defined which includes a partial type constructor A; objects in the type A may diverge, but if they converge, they must be members of A. A fixed point typing principle is given to allow typing of recursive functions. The extraction paradigm of type theory, whereby programs are automatically extracted from constructive proofs, is extended to allow extraction of fixed points. There is a Scott fixed point induction principle for reasoning about these functions. Soundness of the theory is proven. Type theory becomes a more expressive programming logic as a result.
Towards a formal theory of program construction
 REVUE D'INTELLIGENCE ARTIFICIELLE
, 1990
"... A unified framework for formal reasoning about programs and deductive mechanisms involved in programming is developed. Within it principal approaches to program synthesis are formally investigated. We will show that a high degree of abstraction opens a way to combine their strengths, simplifies form ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
A unified framework for formal reasoning about programs and deductive mechanisms involved in programming is developed. Within it principal approaches to program synthesis are formally investigated. We will show that a high degree of abstraction opens a way to combine their strengths, simplifies formal proofs, and leads to clearer insights into the metamathematics of program construction. All definitions and theorems are presented completely formal which allows to straightforwardly implement them with a proof system for the underlying calculus and derive verified implementations of programming methods from them.