Results 1  10
of
15
A Generic Account of ContinuationPassing Styles
 Proceedings of the Twentyfirst Annual ACM Symposium on Principles of Programming Languages
, 1994
"... We unify previous work on the continuationpassing style (CPS) transformations in a generic framework based on Moggi's computational metalanguage. This framework is used to obtain CPS transformations for a variety of evaluation strategies and to characterize the corresponding administrative re ..."
Abstract

Cited by 87 (34 self)
 Add to MetaCart
We unify previous work on the continuationpassing style (CPS) transformations in a generic framework based on Moggi's computational metalanguage. This framework is used to obtain CPS transformations for a variety of evaluation strategies and to characterize the corresponding administrative reductions and inverse transformations. We establish generic formal connections between operational semantics and equational theories. Formal properties of transformations for specific evaluation orders follow as corollaries. Essentially, we factor transformations through Moggi's computational metalanguage. Mapping terms into the metalanguage captures computational properties (e.g., partiality, strictness) and evaluation order explicitly in both the term and the type structure of the metalanguage. The CPS transformation is then obtained by applying a generic transformation from terms and types in the metalanguage to CPS terms and types, based on a typed term representation of the continuation ...
Monads and Effects
 IN INTERNATIONAL SUMMER SCHOOL ON APPLIED SEMANTICS APPSEM’2000
, 2000
"... A tension in language design has been between simple semantics on the one hand, and rich possibilities for sideeffects, exception handling and so on on the other. The introduction of monads has made a large step towards reconciling these alternatives. First proposed by Moggi as a way of structu ..."
Abstract

Cited by 52 (6 self)
 Add to MetaCart
A tension in language design has been between simple semantics on the one hand, and rich possibilities for sideeffects, exception handling and so on on the other. The introduction of monads has made a large step towards reconciling these alternatives. First proposed by Moggi as a way of structuring semantic descriptions, they were adopted by Wadler to structure Haskell programs, and now offer a general technique for delimiting the scope of effects, thus reconciling referential transparency and imperative operations within one programming language. Monads have been used to solve longstanding problems such as adding pointers and assignment, interlanguage working, and exception handling to Haskell, without compromising its purely functional semantics. The course will introduce monads, effects and related notions, and exemplify their applications in programming (Haskell) and in compilation (MLj). The course will present typed metalanguages for monads and related categorica...
CPS Transformation after Strictness Analysis
 ACM Letters on Programming Languages and Systems
, 1993
"... syntax of the source language ` c : ' f:::; x : ø ; :::g ` x : ø ß ` e : ø !ø ß ` fix e : ø ß [ fx : ø 1 g ` e : ø 2 ß ` x : ø 1 : e : ø 1 !ø 2 ß ` e 0 : ø 1 !ø 2 ß ` e 1 : ø 1 ß ` @ e 0 e 1 : ø 2 ß ` e 1 : ' ß ` e 2 : ø ß ` e 3 : ø ß ` if e 1 then e 2 else e 3 : ø ß ` e 0 : ø 0 ß [ fx ..."
Abstract

Cited by 26 (10 self)
 Add to MetaCart
syntax of the source language ` c : ' f:::; x : ø ; :::g ` x : ø ß ` e : ø !ø ß ` fix e : ø ß [ fx : ø 1 g ` e : ø 2 ß ` x : ø 1 : e : ø 1 !ø 2 ß ` e 0 : ø 1 !ø 2 ß ` e 1 : ø 1 ß ` @ e 0 e 1 : ø 2 ß ` e 1 : ' ß ` e 2 : ø ß ` e 3 : ø ß ` if e 1 then e 2 else e 3 : ø ß ` e 0 : ø 0 ß [ fx : ø 0 g ` e 1 : ø 1 ß ` let x = e 0 in e 1 : ø 1 ß ` e 1 : ø 1 ß ` e 2 : ø 2 ß ` pair e 1 e 2 : ø 1 \Theta ø 2 ß ` e : ø 1 \Theta ø 2 ß ` fst e : ø 1 ß ` e : ø 1 \Theta ø 2 ß ` snd e : ø 2 Fig. 2. Typechecking rules for the source language approach is used by Kesley and Hudak [11] and by Fradet and Le M'etayer [9]. Both include a CPS transformation. Fradet and Le M'etayer compile both CBN and CBV programs by using the CBN and the CBV CPStransformation. Recently, Burn and Le M'etayer have combined this technique with a global programanalysis [2], which is comparable to our goal here. 1.4 Overview Section 2 presents the syntax of the source language and the strictnessannotated language. We c...
Thunks and the λcalculus
 IN THE JOURNAL OF FUNCTIONAL PROGRAMMING. RS976 OLIVIER DANVY AND ULRIK
, 1997
"... Plotkin, in his seminal article Callbyname, callbyvalue and the λcalculus, formalized evaluation strategies and simulations using operational semantics and continuations. In particular, he showed how callbyname evaluation could be simulated under callbyvalue evaluation and vice versa. Si ..."
Abstract

Cited by 21 (9 self)
 Add to MetaCart
Plotkin, in his seminal article Callbyname, callbyvalue and the λcalculus, formalized evaluation strategies and simulations using operational semantics and continuations. In particular, he showed how callbyname evaluation could be simulated under callbyvalue evaluation and vice versa. Since Algol 60, however, callbyname is both implemented and simulated with thunks rather than with continuations. We recast
A Taxonomy of Functional Language Implementations Part II: CallbyName, CallbyNeed and Graph Reduction
, 1996
"... In Part I [5], we proposed an approach to formally describe and compare functional languages implementations. We focused on callbyvalue and described wellknown compilers for strict languages. Here, we complete our exploration of the design space of implementations by studying callbyname, cal ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
In Part I [5], we proposed an approach to formally describe and compare functional languages implementations. We focused on callbyvalue and described wellknown compilers for strict languages. Here, we complete our exploration of the design space of implementations by studying callbyname, callbyneed and graph reduction. We express the whole compilation process as a succession of program transformations in a common framework. At each step, different transformations model fundamental choices or optimizations. We describe and compare the diverse alternatives for the compilation of the callbyname strategy in both environment and graphbased models. The different options for the compilation of breduction described in [5] can be applied here as well. Instead, we describe other possibilities specific to graph reduction. Callbyneed is nothing but callbyname with redex sharing and update. We present how sharing can be expressed in our framework and we describe different...
Derivation of Static Analysers of Functional Programs From Path Properties of a Natural Semantics
, 1995
"... We advocate the use of operational semantics as a basis for specifying program analyses for functional languages. We put forward a methodology for defining a static analysis by successive refinements of the natural semantics of the language. We use paths as the abstract representation of proof tree ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We advocate the use of operational semantics as a basis for specifying program analyses for functional languages. We put forward a methodology for defining a static analysis by successive refinements of the natural semantics of the language. We use paths as the abstract representation of proof trees and we provide a language for defining properties in terms of recurrence equations on paths. We show the specification of several standard properties on paths (neededness, absence, uniqueness, . . .) and the mechanical derivation of the corresponding analyses.
A Systematic Study of Functional Language Implementations
 ACM Transactions on Programming Languages and Systems
, 1998
"... : We introduce a unified framework to describe, relate, compare and classify functional language implementations. The compilation process is expressed as a succession of program transformations in the common framework. At each step, different transformations model fundamental choices. A benefit of t ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
: We introduce a unified framework to describe, relate, compare and classify functional language implementations. The compilation process is expressed as a succession of program transformations in the common framework. At each step, different transformations model fundamental choices. A benefit of this approach is to structure and decompose the implementation process. The correctness proofs can be tackled independently for each step and amount to proving program transformations in the functional world. This approach also paves the way to formal comparisons by making it possible to estimate the complexity of individual transformations or compositions of them. Our study aims at covering the whole known design space of sequential functional languages implementations. In particular, we consider callbyvalue, callbyname and callbyneed reduction strategies as well as environment and graphbased implementations. We describe for each compilation step the diverse alternatives as program tr...
Structural Operational Semantics as a Basis for Static Program Analysis
 In ACM Computing Surveys
, 1996
"... interpretation was defined originally in terms of flowcharts or dynamic discrete systems [3]. From the usual flowchart operational semantics, a socalled static (or collecting) semantics is derived automatically by attaching to each program point (flowchart arc) the set of contexts (states) that f ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
interpretation was defined originally in terms of flowcharts or dynamic discrete systems [3]. From the usual flowchart operational semantics, a socalled static (or collecting) semantics is derived automatically by attaching to each program point (flowchart arc) the set of contexts (states) that flow to that point during execution. The collecting semantics summarizes "what really happens at runtime," and the goal of an abstract semantics is to compute properties for the program points that describe the concrete context sets. The abstract semantics does so by executing the flowchart with abstract values that represent context properties. The above formulation is simple and effective, but flowcharts suffer major weaknesses which preclude their use as a general framework for static program analysis: they are too lowlevel and they do not enjoy the compositionality property. A subsequent advance was the formulation of abstract interpretation in a compositional manner via denotational s...
Reflections on Reflections
, 1997
"... In the functional programming literature, compiling is often expressed as a translation between source and target program calculi. In recent work, Sabry and Wadler proposed the notion of a reflection as a basis for relating the source and target calculi. A reflection elegantly describes the situati ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
In the functional programming literature, compiling is often expressed as a translation between source and target program calculi. In recent work, Sabry and Wadler proposed the notion of a reflection as a basis for relating the source and target calculi. A reflection elegantly describes the situation where there is a kernel of the source language that is isomorphic to the target language. However, we believe that the reflection criteria is so strong that it often excludes the usual situation in compiling where one is compiling from a higherlevel to a lowerlevel language. We give a detailed analysis of several translations commonly used in compiling that fail to be reflections. We conclude that, in addition to the notion of reflection, there are several relations weaker a reflection that are useful for characterizing translations. We show that several familiar translations (that are not naturally reflections) form what we call a reduction correspondence. We introduce the more genera...