Results 1  10
of
15
The Theory of LEGO  A Proof Checker for the Extended Calculus of Constructions
, 1994
"... LEGO is a computer program for interactive typechecking in the Extended Calculus of Constructions and two of its subsystems. LEGO also supports the extension of these three systems with inductive types. These type systems can be viewed as logics, and as meta languages for expressing logics, and LEGO ..."
Abstract

Cited by 68 (10 self)
 Add to MetaCart
LEGO is a computer program for interactive typechecking in the Extended Calculus of Constructions and two of its subsystems. LEGO also supports the extension of these three systems with inductive types. These type systems can be viewed as logics, and as meta languages for expressing logics, and LEGO is intended to be used for interactively constructing proofs in mathematical theories presented in these logics. I have developed LEGO over six years, starting from an implementation of the Calculus of Constructions by G erard Huet. LEGO has been used for problems at the limits of our abilities to do formal mathematics. In this thesis I explain some aspects of the metatheory of LEGO's type systems leading to a machinechecked proof that typechecking is decidable for all three type theories supported by LEGO, and to a verified algorithm for deciding their typing judgements, assuming only that they are normalizing. In order to do this, the theory of Pure Type Systems (PTS) is extended and f...
Polymorphism and separation in Hoare type theory
 In icfp
, 2006
"... In previous work we have proposed a Dependent Hoare Type Theory (HTT) as a framework for development and reasoning about higherorder functional programs with effects of state, aliasing and nontermination. The main feature of HTT is the type of Hoare triples {P}x:A{Q} specifying computations with pr ..."
Abstract

Cited by 67 (14 self)
 Add to MetaCart
In previous work we have proposed a Dependent Hoare Type Theory (HTT) as a framework for development and reasoning about higherorder functional programs with effects of state, aliasing and nontermination. The main feature of HTT is the type of Hoare triples {P}x:A{Q} specifying computations with precondition P and postcondition Q, that return a result of type A. Here we extend HTT with predicative type polymorphism. Type quantification is possible in both types and assertions, and we can also quantify over Hoare triples. We show that as a consequence it becomes possible to reason about disjointness of heaps in the assertion logic of HTT. We use this expressiveness to interpret the Hoare triples in the “small footprint ” manner advocated by Separation Logic, whereby a precondition tightly describes the heap fragment required by the computation. We support stateful commands of allocation, lookup, strong update, deallocation, and pointer arithmetic. 1
A General Formulation of Simultaneous InductiveRecursive Definitions in Type Theory
 Journal of Symbolic Logic
, 1998
"... The first example of a simultaneous inductiverecursive definition in intuitionistic type theory is MartinLöf's universe à la Tarski. A set U0 of codes for small sets is generated inductively at the same time as a function T0 , which maps a code to the corresponding small set, is defined by recursi ..."
Abstract

Cited by 65 (10 self)
 Add to MetaCart
The first example of a simultaneous inductiverecursive definition in intuitionistic type theory is MartinLöf's universe à la Tarski. A set U0 of codes for small sets is generated inductively at the same time as a function T0 , which maps a code to the corresponding small set, is defined by recursion on the way the elements of U0 are generated. In this paper we argue that there is an underlying general notion of simultaneous inductiverecursive definition which is implicit in MartinLöf's intuitionistic type theory. We extend previously given schematic formulations of inductive definitions in type theory to encompass a general notion of simultaneous inductionrecursion. This enables us to give a unified treatment of several interesting constructions including various universe constructions by Palmgren, Griffor, Rathjen, and Setzer and a constructive version of Aczel's Frege structures. Consistency of a restricted version of the extension is shown by constructing a realisability model ...
Syntax and Semantics of Dependent Types
 Semantics and Logics of Computation
, 1997
"... ion is written as [x: oe]M instead of x: oe:M and application is written M(N) instead of App [x:oe] (M; N ). 1 Iterated abstractions and applications are written [x 1 : oe 1 ; : : : ; x n : oe n ]M and M(N 1 ; : : : ; N n ), respectively. The lacking type information can be inferred. The universe ..."
Abstract

Cited by 40 (4 self)
 Add to MetaCart
ion is written as [x: oe]M instead of x: oe:M and application is written M(N) instead of App [x:oe] (M; N ). 1 Iterated abstractions and applications are written [x 1 : oe 1 ; : : : ; x n : oe n ]M and M(N 1 ; : : : ; N n ), respectively. The lacking type information can be inferred. The universe is written Set instead of U . The Eloperator is omitted. For example the \Pitype is described by the following constant and equality declarations (understood in every valid context): ` \Pi : (oe: Set; : (oe)Set)Set ` App : (oe: Set; : (oe)Set; m: \Pi(oe; ); n: oe) (m) ` : (oe: Set; : (oe)Set; m: (x: oe) (x))\Pi(oe; ) oe: Set; : (oe)Set; m: (x: oe) (x); n: oe ` App(oe; ; (oe; ; m); n) = m(n) Notice, how terms with free variables are represented as framework abstractions (in the type of ) and how substitution is represented as framework application (in the type of App and in the equation). In this way the burden of dealing correctly with variables, substitution, and binding is s...
Domain Theoretic Models Of Polymorphism
, 1989
"... We give an illustration of a construction useful in producing and describing models of Girard and Reynolds' polymorphic calculus. The key unifying ideas are that of a Grothendieck fibration and the category of continuous sections associated with it, constructions used in indexed category theory; th ..."
Abstract

Cited by 34 (2 self)
 Add to MetaCart
We give an illustration of a construction useful in producing and describing models of Girard and Reynolds' polymorphic calculus. The key unifying ideas are that of a Grothendieck fibration and the category of continuous sections associated with it, constructions used in indexed category theory; the universal types of the calculus are interpreted as the category of continuous sections of the fibration. As a major example a new model for the polymorphic calculus is presented. In it a type is interpreted as a Scott domain. In fact, understanding universal types of the polymorphic calculus as categories of continuous sections appears to be useful generally. For example, the technique also applies to the finitary projection model of Bruce and Longo, and a recent model of Girard. (Indeed the work here was inspired by Girard's and arose through trying to extend the construction of his model to Scott domains.) It is hoped that by pinpointing a key construction this paper will help towards...
A Simple Model for Quotient Types
 Proceedings of TLCA'95, volume 902 of Lecture Notes in Computer Science
, 1995
"... . We give an interpretation of quotient types within in a dependent type theory with an impredicative universe of propositions (Calculus of Constructions). In the model, type dependency arises only at the propositional level, therefore universes and large eliminations cannot be interpreted. In excha ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
. We give an interpretation of quotient types within in a dependent type theory with an impredicative universe of propositions (Calculus of Constructions). In the model, type dependency arises only at the propositional level, therefore universes and large eliminations cannot be interpreted. In exchange, the model is much simpler and more intuitive than the one proposed by the author in [10]. Moreover, we interpret a choice operator for quotient types that, under certain restrictions, allows one to recover a representative from an equivalence class. Since the model is constructed syntactically, the interpretation function from the syntax with quotient types to the model gives rise to a procedure which eliminates quotient types by replacing propositional equality by equality relations defined by induction on the type structure ("book equalities"). 1 Introduction Intensional type theories like the Calculus of Constructions have been proposed as a framework in which to formalise mathemati...
An Implementation of LF with Coercive Subtyping & Universes
 Journal of Automated Reasoning
"... . We present `Plastic', an implementation of LF with Coercive Subtyping, and focus on its implementation of Universes. LF is a variant of MartinLof's logical framework, with explicitly typed abstractions. We outline the system of LF with its extensions of inductive types and coercions. Plastic is ..."
Abstract

Cited by 15 (9 self)
 Add to MetaCart
. We present `Plastic', an implementation of LF with Coercive Subtyping, and focus on its implementation of Universes. LF is a variant of MartinLof's logical framework, with explicitly typed abstractions. We outline the system of LF with its extensions of inductive types and coercions. Plastic is the first implementation of this extended system; we discuss motivations and basic architecture, and give examples of its use. LF is used to specify type theories. The theory UTT includes a hierarchy of universes which is specified in Tarski style. We outline the theory of these universes and explain how they are implemented in Plastic. Of particular interest is the relationship between universes and inductive types, and the relationship between universes and coercive subtyping. We claim that the combination of Tarskistyle universes together with coercive subtyping provides an ideal formulation of universes which is both semantically clear and practical to use. Keywords: type theory, un...
Higman's Lemma in Type Theory
 PROCEEDINGS OF THE 1996 WORKSHOP ON TYPES FOR PROOFS AND PROGRAMS
, 1997
"... This thesis is about exploring the possibilities of a limited version of MartinLöf's type theory. This exploration consists both of metatheoretical considerations and of the actual use of that version of type theory to prove Higman's lemma. The thesis is organized in two papers, one in which type t ..."
Abstract

Cited by 5 (0 self)
 Add to MetaCart
This thesis is about exploring the possibilities of a limited version of MartinLöf's type theory. This exploration consists both of metatheoretical considerations and of the actual use of that version of type theory to prove Higman's lemma. The thesis is organized in two papers, one in which type theory itself is studied and one in which it is used to prove Higman's lemma. In the first paper, A Lambda Calculus Model of MartinLöf's Theory of Types with Explicit Substitution, we present the formal calculus in complete detail. It consists of MartinLof's logical framework with explicit substitution extended with some inductively defined sets, also given in complete detail. These inductively defined sets are precisely those we need in the second paper of this thesis for the formal proof of Higman's lemma. The limitations of the formalism come from the fact that we do not introduce universes. It is known that for other versions of type theory, the absence of universes implies the impossib...
A typetheoretic framework for formal reasoning with different logical foundations
 Proc of the 11th Annual Asian Computing Science Conference
, 2006
"... different logical foundations ..."