Results 11  20
of
66
TemperleyLieb Algebra: From Knot Theory to . . .
"... Our aim in this paper is to trace some of the surprising and beautiful connections which are beginning to emerge between a number of apparently disparate topics. ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
Our aim in this paper is to trace some of the surprising and beautiful connections which are beginning to emerge between a number of apparently disparate topics.
Quantum informationflow, concretely, abstractly
 PROC. QPL 2004
, 2004
"... These ‘lecture notes ’ are based on joint work with Samson Abramsky. I will survey and informally discuss the results of [3, 4, 5, 12, 13] in a pedestrian not too technical way. These include: • ‘The logic of entanglement’, that is, the identification and abstract axiomatization of the ‘quantum info ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
These ‘lecture notes ’ are based on joint work with Samson Abramsky. I will survey and informally discuss the results of [3, 4, 5, 12, 13] in a pedestrian not too technical way. These include: • ‘The logic of entanglement’, that is, the identification and abstract axiomatization of the ‘quantum informationflow ’ which enables protocols such as quantum teleportation. 1 To this means we defined strongly compact closed categories which abstractly capture the behavioral properties of quantum entanglement. • ‘Postulates for an abstract quantum formalism ’ in which classical informationflow (e.g. token exchange) is part of the formalism. As an example, we provided a purely formal description of quantum teleportation and proved correctness in abstract generality. 2 In this formalism types reflect kinds, contra the essentially typeless von Neumann formalism [25]. Hence even concretely this formalism manifestly improves on the usual one. • ‘A highlevel approach to quantum informatics’. 3 Indeed, the above discussed work can be conceived as aiming to solve: von Neumann quantum formalism � highlevel language lowlevel language. I also provide a brief discussion on how classical and quantum uncertainty can be mixed in the above formalism (cf. density matrices). 4
Simple free starautonomous categories and full coherence
, 2005
"... This paper gives a simple presentation of the free starautonomous category over a category, based on EilenbergKellyMacLane graphs and Trimble rewiring, for full coherence. ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
This paper gives a simple presentation of the free starautonomous category over a category, based on EilenbergKellyMacLane graphs and Trimble rewiring, for full coherence.
Games in the Semantics of Programming Languages
 Dept. of Philosophy, University of Amsterdam
, 1997
"... ion for PCF Motivated by the full completeness results, it became of compelling interest to reexamine perhaps the bestknown "open problem" in the semantics of programming languages, namely the "Full Abstraction problem for PCF", using the new tools provided by game semantics. ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
ion for PCF Motivated by the full completeness results, it became of compelling interest to reexamine perhaps the bestknown "open problem" in the semantics of programming languages, namely the "Full Abstraction problem for PCF", using the new tools provided by game semantics. 2 PCF is a higherorder functional programming language; modulo issues of the parameterpassing strategies, it forms a fragment of any programming language with higherorder procedures (which includes any reasonably expressive objectoriented language). The aspect of the Full Abstraction problem I personally found most interesting was: to construct a syntaxindependent model in which every element is the denotation of some program (note the analogy with full completeness, whose definition had in turn been motivated in part by this aspect of full abstraction). This is not how the problem was originally formulated, but by "general abstract nonsense", given such a model one can always quotient it to get a fully ab...
Abstract physical traces
 THEORY AND APPLICATIONS OF CATEGORIES
, 2005
"... ... in the light of the results in [Abramsky and Coecke LiCS‘04]. The key fact is that the notion of a strongly compact closed category allows abstract notions of adjoint, bipartite projector and inner product to be defined, and their key properties to be proved. In this paper we improve on the defi ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
... in the light of the results in [Abramsky and Coecke LiCS‘04]. The key fact is that the notion of a strongly compact closed category allows abstract notions of adjoint, bipartite projector and inner product to be defined, and their key properties to be proved. In this paper we improve on the definition of strong compact closure as compared to the one presented in [Abramsky and Coecke LiCS‘04]. This modification enables an elegant characterization of strong compact closure in terms of adjoints and a Yanking axiom, and a better treatment of bipartite projectors.
Category theory for linear logicians
 Linear Logic in Computer Science
, 2004
"... This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categori ..."
Abstract

Cited by 7 (1 self)
 Add to MetaCart
This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categories and their relation to intuitionistic logic is followed by a consideration of symmetric monoidal closed, linearly distributive and ∗autonomous categories and their relation to multiplicative linear logic. We examine nonsymmetric monoidal categories, and consider them as models of noncommutative linear logic. We introduce traced monoidal categories, and discuss their relation to the geometry of interaction. The necessary aspects of the theory of monads is introduced in order to describe the categorical modelling of the exponentials. We conclude by briefly describing the notion of full completeness, a strong form of categorical completeness, which originated in the categorical model theory of linear logic. No knowledge of category theory is assumed, but we do assume knowledge of linear logic sequent calculus and the standard models of linear logic, and modest familiarity with typed lambda calculus. 0
The Uniformity Principle on Traced Monoidal Categories
 In Proceedings of CTCS’02, volume 69 of ENTCS
, 2003
"... The uniformity principle for traced monoidal categories has been introduced as a natural generalization of the uniformity principle (Plotkin's principle) for fixpoint operators in domain theory. We show that this notion can be used for constructing new traced monoidal categories from known ones ..."
Abstract

Cited by 7 (0 self)
 Add to MetaCart
The uniformity principle for traced monoidal categories has been introduced as a natural generalization of the uniformity principle (Plotkin's principle) for fixpoint operators in domain theory. We show that this notion can be used for constructing new traced monoidal categories from known ones. Some classical examples like the Scott induction principle are shown to be instances of these constructions. We also characterize some specific cases of our constructions as suitable enriched limits. 1
Probabilistic Relations
 School of Computer Science, McGill University, Montreal
, 1998
"... The notion of binary relation is fundamental in logic. What is the correct analogue of this concept in the probabilistic case? I will argue that the notion of conditional probability distribution (Markov kernel, stochastic kernel) is the correct generalization. One can define a category based on sto ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
The notion of binary relation is fundamental in logic. What is the correct analogue of this concept in the probabilistic case? I will argue that the notion of conditional probability distribution (Markov kernel, stochastic kernel) is the correct generalization. One can define a category based on stochastic kernels which has many of the formal properties of the ordinary category of relations. Using this concept I will show how to define iteration in this category and give a simple treatment of Kozen's language of while loops and probabilistic choice. I will use the concept of stochastic relation to introduce some of the ongoing joint work with Edalat and Desharnais on Labeled Markov Processes. In my talk I will assume that people do not know what partially additive categories are but that they do know basic category theory and basic notions like measure and probability. This work is mainly due to Kozen, Giry, Lawvere and others. 1 Introduction The notion of binary relation and relation...
WHAT IS BEHIND UMLRT?
, 1999
"... The unified modeling language (UML) developed under the coordination of the Object Management Group (OMG) is one of the most important standards for the specification and design of object oriented systems. This standard is currently tuned for real time applications in the form of a new proposal, UML ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
The unified modeling language (UML) developed under the coordination of the Object Management Group (OMG) is one of the most important standards for the specification and design of object oriented systems. This standard is currently tuned for real time applications in the form of a new proposal, UML for RealTime (UMLRT), by Rational Software Corporation and ObjecTime Limited. Because of the importance of UMLRT we are investigating its formal foundation in a joint project between ObjecTime Limited, Technische Universität München and the University of Bucharest. Our results clearly show that the visual notation of UMLRT is not only very intuitive but it also has a very deep mathematical foundation. In a previous paper (see [GBSS98]) we presented part of this foundation, namely the theory of flow graphs. In this paper we use flow graphs to define the more powerful theory of interaction graphs.