Results 1  10
of
24
The Theory of LEGO  A Proof Checker for the Extended Calculus of Constructions
, 1994
"... LEGO is a computer program for interactive typechecking in the Extended Calculus of Constructions and two of its subsystems. LEGO also supports the extension of these three systems with inductive types. These type systems can be viewed as logics, and as meta languages for expressing logics, and LEGO ..."
Abstract

Cited by 69 (10 self)
 Add to MetaCart
LEGO is a computer program for interactive typechecking in the Extended Calculus of Constructions and two of its subsystems. LEGO also supports the extension of these three systems with inductive types. These type systems can be viewed as logics, and as meta languages for expressing logics, and LEGO is intended to be used for interactively constructing proofs in mathematical theories presented in these logics. I have developed LEGO over six years, starting from an implementation of the Calculus of Constructions by G erard Huet. LEGO has been used for problems at the limits of our abilities to do formal mathematics. In this thesis I explain some aspects of the metatheory of LEGO's type systems leading to a machinechecked proof that typechecking is decidable for all three type theories supported by LEGO, and to a verified algorithm for deciding their typing judgements, assuming only that they are normalizing. In order to do this, the theory of Pure Type Systems (PTS) is extended and f...
Pure type systems formalized
 Proceedings of the International Conference on Typed Lambda Calculi and Applications
, 1993
"... ..."
Elimination with a Motive
 Types for Proofs and Programs (Proceedings of the International Workshop, TYPES’00), volume 2277 of LNCS
, 2002
"... I present a tactic, BasicElim, for Type Theory based proof systems to apply elimination rules in a refinement setting. Applicable rules are parametric in their conclusion, expressing the leverage hypotheses ~x yield on any \Phi ~x we choose. \Phi represents the motive for an elimination: BasicElim& ..."
Abstract

Cited by 37 (12 self)
 Add to MetaCart
I present a tactic, BasicElim, for Type Theory based proof systems to apply elimination rules in a refinement setting. Applicable rules are parametric in their conclusion, expressing the leverage hypotheses ~x yield on any \Phi ~x we choose. \Phi represents the motive for an elimination: BasicElim's job is to construct a \Phi suited to the goal at hand. If these ~x inhabit an instance of \Phi's domain, I adopt a technique standard in `folklore', generalizing the ~x and expressing the restriction by equation. A novel notion of = readily permits dependent equations, and a second tactic, Unify, simpifies the equational hypotheses thus appearing in subgoals. Given such technology, it becomes effective to express properties of datatypes, relations and functions in this style. A small extension couples BasicElim with rewriting, allowing complex techniques to be packaged in a single rule. 1
Specification Structures and PropositionsasTypes for Concurrency
 Logics for Concurrency: Structure vs. AutomataProceedings of the VIIIth Banff Higher Order Workshop, volume 1043 of Lecture Notes in Computer Science
, 1995
"... Many different notions of "property of interest" and methods of verifying such properties arise naturally in programming. A general framework of "Specification Structures" is presented for combining different notions and methods in a coherent fashion. This is then applied to c ..."
Abstract

Cited by 21 (5 self)
 Add to MetaCart
Many different notions of "property of interest" and methods of verifying such properties arise naturally in programming. A general framework of "Specification Structures" is presented for combining different notions and methods in a coherent fashion. This is then applied to concurrency in the setting of Interaction Categories.
Mathematical Vernacular and Conceptual Wellformedness in Mathematical Language
 Proceedings of the 2nd Inter. Conf. on Logical Aspects of Computational Linguistics, LNCS/LNAI 1582
, 1998
"... . This paper investigates the semantics of mathematical concepts in a type theoretic framework with coercive subtyping. The typetheoretic analysis provides a formal semantic basis in the design and implementation of Mathematical Vernacular (MV), a natural language suitable for interactive developmen ..."
Abstract

Cited by 14 (9 self)
 Add to MetaCart
. This paper investigates the semantics of mathematical concepts in a type theoretic framework with coercive subtyping. The typetheoretic analysis provides a formal semantic basis in the design and implementation of Mathematical Vernacular (MV), a natural language suitable for interactive development of mathematics with the support of the current theorem proving technology. The idea of semantic wellformedness in mathematical language is motivated with examples. A formal system based on a notion of conceptual category is then presented, showing how type checking supports our notion of wellformedness. The power of this system is then extended by incorporating a notion of subcategory, using ideas from a more general theory of coercive subtyping, which provides the mechanisms for modelling conventional abbreviations in mathematics. Finally, we outline how this formal work can be used in an implementation of MV. 1 Introduction By mathematical vernacular (MV), we mean a mathematical and n...
A Typetheoretic Approach to Deadlockfreedom of Asynchronous Systems
 In Proc. TACS
, 1997
"... We present a typebased technique for the verification of deadlockfreedom in asynchronous concurrent systems. Our approach is to start with an interaction category such as ASProc, where objects are types containing safety specifications and morphisms are processes. We then use a specification st ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
We present a typebased technique for the verification of deadlockfreedom in asynchronous concurrent systems. Our approach is to start with an interaction category such as ASProc, where objects are types containing safety specifications and morphisms are processes. We then use a specification structure to add information to the types so that they specify stronger properties. The extra information in this case concerns deadlockfreedom, and in the resulting category ASProc D , combining welltyped processes preserves deadlockfreedom. It is also possible to accommodate noncompositional methods within the same framework. The systems we consider are asynchronous, hence issues of divergence become significant; our approach incorporates an elegant treatment of both divergence and successful termination. As an example, we use our methods to verify the deadlockfreedom of an implementation of the alternatingbit protocol. Address for Correspondence Dr S. J. Gay Department of ...
Refinement Types for Specification
 IFIP Working Conference on Programming Concepts and Methods (PROCOMET ’98), Shelter Island
, 1998
"... We develop a theory of program specification using the notion of refinement type. This provides a notion of structured specification, useful for verification and program development. We axiomatise the satisfaction of specifications by programs as a generalised typing relation and give rules for refi ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
We develop a theory of program specification using the notion of refinement type. This provides a notion of structured specification, useful for verification and program development. We axiomatise the satisfaction of specifications by programs as a generalised typing relation and give rules for refining specifications. A per semantics based on Henkin models is given, for which the system is proven to be sound and complete. Keywords Specification, refinement, verification, type theory, Henkin models 1
Program Extraction in simplytyped Higher Order Logic
 Types for Proofs and Programs (TYPES 2002), LNCS 2646
, 2002
"... Based on a representation of primitive proof objects as  terms, which has been built into the theorem prover Isabelle recently, we propose a generic framework for program extraction. We show how this framework can be used to extract functional programs from proofs conducted in a constructive fr ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
Based on a representation of primitive proof objects as  terms, which has been built into the theorem prover Isabelle recently, we propose a generic framework for program extraction. We show how this framework can be used to extract functional programs from proofs conducted in a constructive fragment of the object logic Isabelle/HOL. A characteristic feature of our implementation of program extraction is that it produces both a program and a correctness proof. Since the extracted program is available as a function within the logic, its correctness proof can be checked automatically inside Isabelle.
A Theory of Program Refinement
, 1998
"... We give a canonical program refinement calculus based on the lambda calculus and classical firstorder predicate logic, and study its proof theory and semantics. The intention is to construct a metalanguage for refinement in which basic principles of program development can be studied. The idea is t ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We give a canonical program refinement calculus based on the lambda calculus and classical firstorder predicate logic, and study its proof theory and semantics. The intention is to construct a metalanguage for refinement in which basic principles of program development can be studied. The idea is that it should be possible to induce a refinement calculus in a generic manner from a programming language and a program logic. For concreteness, we adopt the simplytyped lambda calculus augmented with primitive recursion as a paradigmatic typed functional programming language, and use classical firstorder logic as a simple program logic. A key feature is the construction of the refinement calculus in a modular fashion, as the combination of two orthogonal extensions to the underlying programming language (in this case, the simplytyped lambda calculus). The crucial observation is that a refinement calculus is given by extending a programming language to allow indeterminate expressions (or ‘stubs’) involving the construction ‘some program x such that P ’. Factoring this into ‘some x...’
Verifying Properties of Module Construction in Type Theory
 In Proc. MFCS'93, volume 711 of LNCS
, 1993
"... This paper presents a comparison between algebraic specificationsinthelarge and a type theoretical formulation of modular specifications, called deliverables. It is shown that the laws of module algebra can be translated to laws about deliverables which can be proved correct in type theory. The a ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
This paper presents a comparison between algebraic specificationsinthelarge and a type theoretical formulation of modular specifications, called deliverables. It is shown that the laws of module algebra can be translated to laws about deliverables which can be proved correct in type theory. The adequacy of the Extended Calculus of Constructions as a possible implementation of type theory is discussed and it is explained how the reformulation of the laws is influenced by this choice.