Results 1  10
of
22
Domains for Computation in Mathematics, Physics and Exact Real Arithmetic
 Bulletin of Symbolic Logic
, 1997
"... We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability dist ..."
Abstract

Cited by 48 (10 self)
 Add to MetaCart
We present a survey of the recent applications of continuous domains for providing simple computational models for classical spaces in mathematics including the real line, countably based locally compact spaces, complete separable metric spaces, separable Banach spaces and spaces of probability distributions. It is shown how these models have a logical and effective presentation and how they are used to give a computational framework in several areas in mathematics and physics. These include fractal geometry, where new results on existence and uniqueness of attractors and invariant distributions have been obtained, measure and integration theory, where a generalization of the Riemann theory of integration has been developed, and real arithmetic, where a feasible setting for exact computer arithmetic has been formulated. We give a number of algorithms for computation in the theory of iterated function systems with applications in statistical physics and in period doubling route to chao...
A DomainTheoretic Approach to Computability on the Real Line
, 1997
"... In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and ..."
Abstract

Cited by 43 (8 self)
 Add to MetaCart
In recent years, there has been a considerable amount of work on using continuous domains in real analysis. Most notably are the development of the generalized Riemann integral with applications in fractal geometry, several extensions of the programming language PCF with a real number data type, and a framework and an implementation of a package for exact real number arithmetic. Based on recursion theory we present here a precise and direct formulation of effective representation of real numbers by continuous domains, which is equivalent to the representation of real numbers by algebraic domains as in the work of StoltenbergHansen and Tucker. We use basic ingredients of an effective theory of continuous domains to spell out notions of computability for the reals and for functions on the real line. We prove directly that our approach is equivalent to the established Turingmachine based approach which dates back to Grzegorczyk and Lacombe, is used by PourEl & Richards in their found...
A New Representation for Exact Real Numbers
, 1997
"... We develop the theoretical foundation of a new representation of real numbers based on the infinite composition of linear fractional transformations (lft), equivalently the infiite product of matrices, with nonnegative coefficients. Any rational interval in the one point compactification of the rea ..."
Abstract

Cited by 42 (8 self)
 Add to MetaCart
We develop the theoretical foundation of a new representation of real numbers based on the infinite composition of linear fractional transformations (lft), equivalently the infiite product of matrices, with nonnegative coefficients. Any rational interval in the one point compactification of the real line, represented by the unit circle S¹, is expressed as the image of the base interval [0�1] under an lft. A sequence of shrinking nested intervals is then represented by an infinite product of matrices with integer coefficients such that the first socalled sign matrix determines an interval on which the real number lies. The subsequent socalled digit matrices have nonnegative integer coe cients and successively re ne that interval. Based on the classi cation of lft's according to their conjugacy classes and their geometric dynamics, we show that there is a canonical choice of four sign matrices which are generated by rotation of S¹ by =4. Furthermore, the ordinary signed digit representation of real numbers in a given base induces a canonical choice of digit matrices.
An overview of semantics for the validation of numerical programs
, 2005
"... Abstract. In this article, we introduce a simple formal semantics for floatingpoint numbers with errors which is expressive enough to be formally compared to the other methods. Next, we define formal semantics for interval, stochastic, automatic differentiation and error series methods. This enable ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
Abstract. In this article, we introduce a simple formal semantics for floatingpoint numbers with errors which is expressive enough to be formally compared to the other methods. Next, we define formal semantics for interval, stochastic, automatic differentiation and error series methods. This enables us to formally compare the properties calculated in each semantics to our reference, simple semantics. Most of these methods having been developed to verify numerical intensive codes, we also discuss their adequacy to the formal validation of softwares and to static analysis. Finally, this study is completed by experimental results. 1
A certified, corecursive implementation of exact real numbers
 Theoretical Computer Science
, 2006
"... We implement exact real numbers in the logical framework Coq using streams, i.e., infinite sequences, of digits, and characterize constructive real numbers through a minimal axiomatization. We prove that our construction inhabits the axiomatization, working formally with coinductive types and corecu ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
We implement exact real numbers in the logical framework Coq using streams, i.e., infinite sequences, of digits, and characterize constructive real numbers through a minimal axiomatization. We prove that our construction inhabits the axiomatization, working formally with coinductive types and corecursive proofs. Thus we obtain reliable, corecursive algorithms for computing on real numbers.
Lazy Computation with Exact Real Numbers
 Proceedings of the third ACM SIGPLAN International Conference on Functional Programming (ICFP98), volume 34, 1 of ACM SIGPLAN Notices
, 1997
"... We extend the framework for exact real arithmetic using linear fractional transformations from the nonnegative numbers to the extended real line. We then present an extension of PCF with a real type which introduces an eventually breadthfirst strategy for lazy evaluation of exact real numbers. In ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
We extend the framework for exact real arithmetic using linear fractional transformations from the nonnegative numbers to the extended real line. We then present an extension of PCF with a real type which introduces an eventually breadthfirst strategy for lazy evaluation of exact real numbers. In this language, we present the constant redundant if, rif, for defining functions by cases which, in contrast to parallel if (pif), overcomes the problem of undecidability of comparison of real numbers in finite time. We use the upper space of the onepoint compactification of the real line to develop a denotational semantics for the lazy evaluation of real programs. Finally two adequacy results are proved, one for programs containing rif and one for those not containing it. Our adequacy results in particular provide the proof of correctness of algorithms for computation of singlevalued elementary functions. 1 Introduction It is well known that the accumulation of roundoff errors in floati...
Contractivity of Linear Fractional Transformations
 Third Real Numbers and Computers Conference (RNC3
, 1998
"... One possible approach to exact real arithmetic is to use linear fractional transformations (LFT's) to represent real numbers and computations on real numbers. Recursive expressions built from LFT's are only convergent (i.e., denote a welldefined real number) if the involved LFT's are sufficiently c ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
One possible approach to exact real arithmetic is to use linear fractional transformations (LFT's) to represent real numbers and computations on real numbers. Recursive expressions built from LFT's are only convergent (i.e., denote a welldefined real number) if the involved LFT's are sufficiently contractive. In this paper, we define a notion of contractivity for LFT's. It is used for convergence theorems and for the analysis and improvement of algorithms for elementary functions. Keywords : Exact Real Arithmetic, Linear Fractional Transformations 1 Introduction Linear Fractional Transformations (LFT's) provide an elegant approach to real number arithmetic [8, 17, 11, 14, 12, 6]. Onedimensional LFT's x 7! ax+c bx+d are used in the representation of real numbers and to implement basic unary functions, while twodimensional LFT's (x; y) 7! axy+cx+ey+g bxy+dx+fy+h provide binary operations such as addition and multiplication, and can be combined to obtain infinite expression trees ...
A characterization of partial metrizability: Domains are quantifiable
 Theoretical Computer Science
, 2001
"... A characterization of partial metrizability is given which provides a partial solution to an open problem stated by Kunzi in the survey paper Nonsymmetric Topology ([Kun93], problem 7 ). The characterization yields a powerful tool which establishes a correspondence between partial metrics and ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
A characterization of partial metrizability is given which provides a partial solution to an open problem stated by Kunzi in the survey paper Nonsymmetric Topology ([Kun93], problem 7 ). The characterization yields a powerful tool which establishes a correspondence between partial metrics and special types of valuations, referred to as Qvaluations (cf. also [Sch00]). The notion of a Qvaluation essentially combines the wellknown notion of a valuation with a weaker version of the notion of a quasiunimorphism, i.e. an isomorphism in the context of quasiuniform spaces. As an application, we show that #continuous dcpo's are quantifiable in the sense of [O'N97], i.e. the Scott topology and partial order are induced by a partial metric. For #algebraic dcpo's the Lawson topology is induced by the associated metric. The partial metrization of general domains improves prior approaches in two ways:  The partial metric is guaranteed to capture the Scott topology as opposed to e.g. [Smy87],[BvBR95],[FS96] and [FK97], which in general yield a coarser topology.
The Appearance of Big Integers in Exact Real Arithmetic based on Linear Fractional Transformations
 In Proc. Foundations of Software Science and Computation Structures (FoSSaCS '98), volume 1378 of LNCS
, 1997
"... . One possible approach to exact real arithmetic is to use linear fractional transformations to represent real numbers and computations on real numbers. In this paper, we show that the bit sizes of the (integer) parameters of nearly all transformations used in computations are proportional to the nu ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
. One possible approach to exact real arithmetic is to use linear fractional transformations to represent real numbers and computations on real numbers. In this paper, we show that the bit sizes of the (integer) parameters of nearly all transformations used in computations are proportional to the number of basic computational steps executed so far. Here, a basic step means consuming one digit of the argument(s) or producing one digit of the result. 1 Introduction Linear Fractional Transformations (LFT's) provide an elegant approach to real number arithmetic [8, 16, 11, 14, 12, 6]. Onedimensional LFT's x 7! ax+c bx+d are used as digits and to implement basic functions, while twodimensional LFT's (x; y) 7! axy+cx+ey+g bxy+dx+fy+h provide binary operations such as addition and multiplication, and can be combined to infinite expression trees denoting transcendental functions. In Section 2, we present the details of the LFT approach. This provides the background for understanding the r...
The Correspondence Between Partial Metrics and Semivaluations
"... Partial metrics, or the equivalent weightable quasimetrics, have been introduced in [Mat94] as part of the study of the denotational semantics of data flow networks (cf. also [Mat95]). The interest in valuations in connection to Domain Theory derives from e.g. [JP89], [Jon89], [Eda94] and [Hec95 ..."
Abstract

Cited by 7 (5 self)
 Add to MetaCart
Partial metrics, or the equivalent weightable quasimetrics, have been introduced in [Mat94] as part of the study of the denotational semantics of data flow networks (cf. also [Mat95]). The interest in valuations in connection to Domain Theory derives from e.g. [JP89], [Jon89], [Eda94] and [Hec95]. Connections between partial metrics and valuations have been discussed in the literature, e.g. [O'N97], [BS97] and [BSh98]. In each