Results 1  10
of
23
TimeSpace Tradeoff Lower Bounds for Randomized Computation of Decision Problems
 In Proc. of 41st FOCS
, 2000
"... We prove the first timespace lower bound tradeoffs for randomized computation of decision problems. ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
We prove the first timespace lower bound tradeoffs for randomized computation of decision problems.
On the Complexity of SAT
, 1999
"... We show that nondeterministic time NT IME(n) is not contained in deterministic time n # 2# and polylogarithmic space, for any # > 0. This implies that (infinitely often) satisfiability cannot be solved in time O(n # 2# ) and polylogarithmic space. A similar result is presented for uniform cir ..."
Abstract

Cited by 25 (1 self)
 Add to MetaCart
We show that nondeterministic time NT IME(n) is not contained in deterministic time n # 2# and polylogarithmic space, for any # > 0. This implies that (infinitely often) satisfiability cannot be solved in time O(n # 2# ) and polylogarithmic space. A similar result is presented for uniform circuits.
TimeSpace Lower Bounds for the PolynomialTime Hierarchy on Randomized Machines
 SIAM Journal on Computing
, 2006
"... We establish the first polynomialstrength timespace lower bounds for problems in the lineartime hierarchy on randomized machines with twosided error. We show that for any integer ℓ> 1 and constant c < ℓ, there exists a positive constant d such that QSAT ℓ cannot be computed by such machines ..."
Abstract

Cited by 18 (6 self)
 Add to MetaCart
(Show Context)
We establish the first polynomialstrength timespace lower bounds for problems in the lineartime hierarchy on randomized machines with twosided error. We show that for any integer ℓ> 1 and constant c < ℓ, there exists a positive constant d such that QSAT ℓ cannot be computed by such machines in time n c and space n d, where QSAT ℓ denotes the problem of deciding the validity of a quantified Boolean formula with at most ℓ − 1 quantifier alternations. Moreover, d approaches 1/2 from below as c approaches 1 from above for ℓ = 2, and d approaches 1 from below as c approaches 1 from above for ℓ ≥ 3. In fact, we establish the stronger result that for any constants a ≤ 1 and c < 1+(ℓ −1)a, there exists a positive constant d such that lineartime alternating machines using space n a and ℓ − 1 alternations cannot be simulated by randomized machines with twosided error running in time n c and space n d, where d approaches a/2 from below as c approaches 1 from above for ℓ = 2 and d approaches a from below as c approaches 1 from above for ℓ ≥ 3. Corresponding to ℓ = 1, we prove that there exists a positive constant d such that the set of Boolean tautologies cannot be decided by a randomized machine with onesided error in time n 1.759 and space n d. As a corollary, this gives the same lower bound for satisfiability on deterministic machines, improving on the previously best known such result. 1
TimeSpace Tradeoffs in the Counting Hierarchy
, 2001
"... We extend the lower bound techniques of [14], to the unboundederror probabilistic model. A key step in the argument is a generalization of Nepomnjasci's theorem from the Boolean setting to the arithmetic setting. This generalization is made possible, due to the recent discovery of logspaceuni ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
(Show Context)
We extend the lower bound techniques of [14], to the unboundederror probabilistic model. A key step in the argument is a generalization of Nepomnjasci's theorem from the Boolean setting to the arithmetic setting. This generalization is made possible, due to the recent discovery of logspaceuniform TC 0 circuits for iterated multiplication [9]. Here is an
A Survey of Lower Bounds for Satisfiability and Related Problems
 Foundations and Trends in Theoretical Computer Science
, 2007
"... Ever since the fundamental work of Cook from 1971, satisfiability has been recognized as a central problem in computational complexity. It is widely believed to be intractable, and yet till recently even a lineartime, logarithmicspace algorithm for satisfiability was not ruled out. In 1997 Fortnow ..."
Abstract

Cited by 17 (1 self)
 Add to MetaCart
Ever since the fundamental work of Cook from 1971, satisfiability has been recognized as a central problem in computational complexity. It is widely believed to be intractable, and yet till recently even a lineartime, logarithmicspace algorithm for satisfiability was not ruled out. In 1997 Fortnow, building on earlier work by Kannan, ruled out such an algorithm. Since then there has been a significant amount of progress giving nontrivial lower bounds on the computational complexity of satisfiability. In this article we survey the known lower bounds for the time and space complexity of satisfiability and closely related problems on deterministic, randomized, and quantum models with random access. We discuss the stateoftheart results and present the underlying arguments in a unified framework. 1
Inductive TimeSpace Lower Bounds for SAT and Related Problems
 Computational Complexity
, 2005
"... Abstract. We improve upon indirect diagonalization arguments for lower bounds on explicit problems within the polynomial hierarchy. Our contributions are summarized as follows. 1. We present a technique that uniformly improves upon most known nonlinear time lower bounds for nondeterminism andalterna ..."
Abstract

Cited by 15 (4 self)
 Add to MetaCart
Abstract. We improve upon indirect diagonalization arguments for lower bounds on explicit problems within the polynomial hierarchy. Our contributions are summarized as follows. 1. We present a technique that uniformly improves upon most known nonlinear time lower bounds for nondeterminism andalternating computation, on both subpolynomial (n o(1) ) space RAMs and sequential onetape machines with random access to the input. We obtain improved lower bounds for Boolean satisfiability (SAT), as well as all NPcomplete problems that have efficient reductions from SAT, and ΣkSAT, for constant k ≥ 2. For example, SAT cannot be solved by random access machines using n √ 3 time and subpolynomial space. 2. We show how indirect diagonalization leads to timespace lower bounds for computation with bounded nondeterminism. For both the random access and multitape Turing machine models, we prove that for all k ≥ 1, there is a constant ck> 1 such that linear time with n 1/k nondeterministic bits is not contained in deterministic n ck time with subpolynomial space. This is used to prove that satisfiability of Boolean circuits with n inputs and n k size cannot be solved by deterministic multitape Turing machines running in n k·ck time and subpolynomial space.
TimeSpace Tradeoffs for Counting NP Solutions Modulo Integers
 In Proceedings of the 22nd IEEE Conference on Computational Complexity
, 2007
"... We prove the first timespace tradeoffs for counting the number of solutions to an NP problem modulo small integers, and also improve upon known timespace tradeoffs for Sat. Let m> 0 be an integer, and define MODmSat to be the problem of determining if a given Boolean formula has exactly km sat ..."
Abstract

Cited by 15 (5 self)
 Add to MetaCart
We prove the first timespace tradeoffs for counting the number of solutions to an NP problem modulo small integers, and also improve upon known timespace tradeoffs for Sat. Let m> 0 be an integer, and define MODmSat to be the problem of determining if a given Boolean formula has exactly km satisfying assignments, for some integer k. We show for all primes p except for possibly one of them, and for all c < 2cos(π/7) ≈ 1.801, there is a d> 0 such that MODpSat is not solvable in n c time and n d space by general algorithms. That is, there is at most one prime p that does not satisfy the tradeoff. We prove that the same limitation holds for Sat and MOD6Sat, as well as MODmSat for any composite m that is not a prime power. Our main tool is a general method for rapidly simulating deterministic computations with restricted space, by counting the number of solutions to NP predicates modulo integers. The simulation converts an ordinary algorithm into a “canonical ” one that consumes roughly the same amount of time and space, yet canonical algorithms have nice properties suitable for counting.
Algorithms and Resource Requirements for Fundamental Problems
, 2007
"... no. DGE0234630. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity. ..."
Abstract

Cited by 12 (6 self)
 Add to MetaCart
(Show Context)
no. DGE0234630. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.
Improved Bounds on the Weak Pigeonhole Principle and Infinitely Many Primes from Weaker Axioms
, 2001
"... We show that the known boundeddepth proofs of the Weak Pigeonhole Principle PHP 2n n in size n O(log(n)) are not optimal in terms of size. More precisely, we give a sizedepth tradeoff upper bound: there are proofs of size n O(d(log(n)) 2=d ) and depth O(d). This solves an open problem ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
We show that the known boundeddepth proofs of the Weak Pigeonhole Principle PHP 2n n in size n O(log(n)) are not optimal in terms of size. More precisely, we give a sizedepth tradeoff upper bound: there are proofs of size n O(d(log(n)) 2=d ) and depth O(d). This solves an open problem of Maciel, Pitassi and Woods (2000). Our technique requires formalizing the ideas underlying Nepomnjascij's Theorem which might be of independent interest. Moreover, our result implies a proof of the unboundedness of primes in I \Delta 0 with a provably weaker `large number assumption' than previously needed.
On Separators, Segregators and Time versus Space
"... We give the first extension of the result due to Paul, Pippenger, Szemeredi and Trotter [24] that deterministic linear time is distinct from nondeterministic linear time. We show that N T IM E(n ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
We give the first extension of the result due to Paul, Pippenger, Szemeredi and Trotter [24] that deterministic linear time is distinct from nondeterministic linear time. We show that N T IM E(n