Results 1 
2 of
2
Dependency networks for inference, collaborative filtering, and data visualization
 Journal of Machine Learning Research
"... We describe a graphical model for probabilistic relationshipsan alternative tothe Bayesian networkcalled a dependency network. The graph of a dependency network, unlike aBayesian network, is potentially cyclic. The probability component of a dependency network, like aBayesian network, is a set of ..."
Abstract

Cited by 156 (10 self)
 Add to MetaCart
We describe a graphical model for probabilistic relationshipsan alternative tothe Bayesian networkcalled a dependency network. The graph of a dependency network, unlike aBayesian network, is potentially cyclic. The probability component of a dependency network, like aBayesian network, is a set of conditional distributions, one for each nodegiven its parents. We identify several basic properties of this representation and describe a computationally e cient procedure for learning the graph and probability components from data. We describe the application of this representation to probabilistic inference, collaborative ltering (the task of predicting preferences), and the visualization of acausal predictive relationships.
Chain Graph Models and their Causal Interpretations
 B
, 2001
"... Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultim ..."
Abstract

Cited by 46 (4 self)
 Add to MetaCart
Chain graphs are a natural generalization of directed acyclic graphs (DAGs) and undirected graphs. However, the apparent simplicity of chain graphs belies the subtlety of the conditional independence hypotheses that they represent. There are a number of simple and apparently plausible, but ultimately fallacious interpretations of chain graphs that are often invoked, implicitly or explicitly. These interpretations also lead to awed methods for applying background knowledge to model selection. We present a valid interpretation by showing how the distribution corresponding to a chain graph may be generated as the equilibrium distribution of dynamic models with feedback. These dynamic interpretations lead to a simple theory of intervention, extending the theory developed for DAGs. Finally, we contrast chain graph models under this interpretation with simultaneous equation models which have traditionally been used to model feedback in econometrics. Keywords: Causal model; cha...