Results 1  10
of
35
Programming with Intersection Types and Bounded Polymorphism
, 1991
"... representing the official policies, either expressed or implied, of the U.S. Government. ..."
Abstract

Cited by 67 (4 self)
 Add to MetaCart
representing the official policies, either expressed or implied, of the U.S. Government.
From Polyvariant Flow Information to Intersection and Union Types
 J. FUNCT. PROGRAMMING
, 1998
"... Many polyvariant program analyses have been studied in the 1990s, including kCFA, polymorphic splitting, and the cartesian product algorithm. The idea of polyvariance is to analyze functions more than once and thereby obtain better precision for each call site. In this paper we present an equivalen ..."
Abstract

Cited by 41 (7 self)
 Add to MetaCart
Many polyvariant program analyses have been studied in the 1990s, including kCFA, polymorphic splitting, and the cartesian product algorithm. The idea of polyvariance is to analyze functions more than once and thereby obtain better precision for each call site. In this paper we present an equivalence theorem which relates a coinductively defined family of polyvariant ow analyses and a standard type system. The proof embodies a way of understanding polyvariant flow information in terms of union and intersection types, and, conversely, a way of understanding union and intersection types in terms of polyvariant flow information. We use the theorem as basis for a new flowtype system in the spirit of the CIL calculus of Wells, Dimock, Muller, and Turbak, in which types are annotated with flow information. A flowtype system is useful as an interface between a owanalysis algorithm and a program optimizer. Derived systematically via our equivalence theorem, our flowtype system should be a g...
Intersection Types and Bounded Polymorphism
, 1996
"... this paper (Compagnoni, Intersection Types and Bounded Polymorphism 3 1994; Compagnoni, 1995) has been used in a typetheoretic model of objectoriented multiple inheritance (Compagnoni & Pierce, 1996). Related calculi combining restricted forms of intersection types with higherorder polymorphism ..."
Abstract

Cited by 37 (0 self)
 Add to MetaCart
this paper (Compagnoni, Intersection Types and Bounded Polymorphism 3 1994; Compagnoni, 1995) has been used in a typetheoretic model of objectoriented multiple inheritance (Compagnoni & Pierce, 1996). Related calculi combining restricted forms of intersection types with higherorder polymorphism and dependent types have been studied by Pfenning (Pfenning, 1993). Following a more detailed discussion of the pure systems of intersections and bounded quantification (Section 2), we describe, in Section 3, a typed calculus called F ("Fmeet ") integrating the features of both. Section 4 gives some examples illustrating this system's expressive power. Section 5 presents the main results of the paper: a prooftheoretic analysis of F 's subtyping and typechecking relations leading to algorithms for checking subtyping and for synthesizing minimal types for terms. Section 6 discusses semantic aspects of the calculus, obtaining a simple soundness proof for the typing rules by interpreting types as partial equivalence relations; however, another prooftheoretic result, the nonexistence of least upper bounds for arbitrary pairs of types, implies that typed models may be more difficult to construct. Section 7 offers concluding remarks. 2. Background
Tridirectional Typechecking
, 2004
"... In prior work we introduced a pure type assignment system that encompasses a rich set of property types, including intersections, unions, and universally and existentially quantified dependent types. In this paper ..."
Abstract

Cited by 36 (8 self)
 Add to MetaCart
In prior work we introduced a pure type assignment system that encompasses a rich set of property types, including intersections, unions, and universally and existentially quantified dependent types. In this paper
Union Types for Semistructured Data
 University of Pennsylvania Dept. of CIS
, 1999
"... Semistructured databases are treated as dynamically typed: they come equipped with no independent schema or type system to constrain the data. Query languages that are designed for semistructured data, even when used with structured data, typically ignore any type information that may be present. ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
Semistructured databases are treated as dynamically typed: they come equipped with no independent schema or type system to constrain the data. Query languages that are designed for semistructured data, even when used with structured data, typically ignore any type information that may be present. The consequences of this are what one would expect from using a dynamic type system with complex data: fewer guarantees on the correctness of applications. For example, a query that would cause a type error in a statically typed query language will return the empty set when applied to a semistructured representation of the same data. Much semistructured data originates in structured data. A semistructured representation is useful when one wants to add data that does not conform to the original type or when one wants to combine sources of different types. However, the deviations from the prescribed types are often minor, and we believe that a better strategy than throwing away all typ...
Strongly Typed FlowDirected Representation Transformations (Extended Abstract)
 In ICFP ’97 [ICFP97
, 1997
"... We present a new framework for transforming data representations in a strongly typed intermediate language. Our method allows both value producers (sources) and value consumers (sinks) to support multiple representations, automatically inserting any required code. Specialized representations can be ..."
Abstract

Cited by 29 (13 self)
 Add to MetaCart
We present a new framework for transforming data representations in a strongly typed intermediate language. Our method allows both value producers (sources) and value consumers (sinks) to support multiple representations, automatically inserting any required code. Specialized representations can be easily chosen for particular source/sink pairs. The framework is based on these techniques: 1. Flow annotated types encode the "flowsfrom" (source) and "flowsto" (sink) information of a flow graph. 2. Intersection and union types support (a) encoding precise flow information, (b) separating flow information so that transformations can be well typed, (c) automatically reorganizing flow paths to enable multiple representations. As an instance of our framework, we provide a function representation transformation that encompasses both closure conversion and inlining. Our framework is adaptable to data other than functions.
A Calculus with Polymorphic and Polyvariant Flow Types
"... We present # CIL , a typed #calculus which serves as the foundation for a typed intermediate language for optimizing compilers for higherorder polymorphic programming languages. The key innovation of # CIL is a novel formulation of intersection and union types and flow labels on both terms and ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
We present # CIL , a typed #calculus which serves as the foundation for a typed intermediate language for optimizing compilers for higherorder polymorphic programming languages. The key innovation of # CIL is a novel formulation of intersection and union types and flow labels on both terms and types. These flow types can encode polyvariant control and data flow information within a polymorphically typed program representation. Flow types can guide a compiler in generating customized data representations in a strongly typed setting. Since # CIL enjoys confluence, standardization, and subject reduction properties, it is a valuable tool for reasoning about programs and program transformations.
Semantic Types: A Fresh Look at the Ideal Model for Types
, 2004
"... We present a generalization of the ideal model for recursive polymorphic types. Types are defined as sets of terms instead of sets of elements of a semantic domain. Our proof of the existence of types (computed by fixpoint of a typing operator) does not rely on metric properties, but on the fact tha ..."
Abstract

Cited by 23 (2 self)
 Add to MetaCart
We present a generalization of the ideal model for recursive polymorphic types. Types are defined as sets of terms instead of sets of elements of a semantic domain. Our proof of the existence of types (computed by fixpoint of a typing operator) does not rely on metric properties, but on the fact that the identity is the limit of a sequence of projection terms. This establishes a connection with the work of Pitts on relational properties of domains. This also suggests that ideals are better understood as closed sets of terms defined by orthogonality with respect to a set of contexts.
A Typed Intermediate Language for FlowDirected Compilation
, 1997
"... We present a typed intermediate language # CIL for optimizing compilers for functionoriented and polymorphically typed programming languages (e.g., ML). The language # CIL is a typed lambda calculus with product, sum, intersection, and union types as well as function types annotated with flow label ..."
Abstract

Cited by 22 (13 self)
 Add to MetaCart
We present a typed intermediate language # CIL for optimizing compilers for functionoriented and polymorphically typed programming languages (e.g., ML). The language # CIL is a typed lambda calculus with product, sum, intersection, and union types as well as function types annotated with flow labels. A novel formulation of intersection and union types supports encoding flow information in the typed program representation. This flow information can direct optimization.
Syntactic Theories and the Algebra of Record Terms
, 1993
"... Recently, many type systems for records have been proposed. For most of them, the types cannot be described as the terms of an algebra. In this case, type checking, or type inference in the case of first order type systems, cannot be derived from existing algorithms. We define record terms as the te ..."
Abstract

Cited by 22 (5 self)
 Add to MetaCart
Recently, many type systems for records have been proposed. For most of them, the types cannot be described as the terms of an algebra. In this case, type checking, or type inference in the case of first order type systems, cannot be derived from existing algorithms. We define record terms as the terms of an equational algebra. We prove decidability of the unification problem for records terms by showing that its equational theory is syntactic. We derive a complete algorithm and prove its termination. We define a notion of canonical terms and approximations of record terms by canonical terms, and show that approximations commute with unification. We also study generic record terms, which extend record terms to model a form of sharing between terms. We prove that the equational theory of generic record terms and that the corresponding unification algorithm always terminates. Th'eories syntaxiques et Alg'ebres d'enregistrements R'esum'e De nombreux syst`emes de types pour les enregistrem...