Results 1  10
of
23
A New Model of Plan Recognition
 Artificial Intelligence
, 1999
"... We present a new abductive, probabilistic theory of plan recognition. This model differs from previous theories in being centered around a model of plan execution: most previous methods have been based on plans as formal objects or on rules describing the recognition process. We show that our ..."
Abstract

Cited by 313 (11 self)
 Add to MetaCart
We present a new abductive, probabilistic theory of plan recognition. This model differs from previous theories in being centered around a model of plan execution: most previous methods have been based on plans as formal objects or on rules describing the recognition process. We show that our new model accounts for phenomena omitted from most previous plan recognition theories: notably the cumulative effect of a sequence of observations of partiallyordered, interleaved plans and the effect of context on plan adoption. The model also supports inferences about the evolution of plan execution in situations where another agent intervenes in plan execution. This facility provides support for using plan recognition to build systems that will intelligently assist a user. 1
ContextSpecific Independence in Bayesian Networks
, 1996
"... Bayesiannetworks provide a languagefor qualitatively representing the conditional independence properties of a distribution. This allows a natural and compact representation of the distribution, eases knowledge acquisition, and supports effective inference algorithms. ..."
Abstract

Cited by 288 (29 self)
 Add to MetaCart
Bayesiannetworks provide a languagefor qualitatively representing the conditional independence properties of a distribution. This allows a natural and compact representation of the distribution, eases knowledge acquisition, and supports effective inference algorithms.
Causal Diagrams For Empirical Research
"... The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subjectmatter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if ..."
Abstract

Cited by 172 (35 self)
 Add to MetaCart
The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subjectmatter information. In particular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifying causal effects from nonexperimental data. If so the diagrams can be queried to produce mathematical expressions for causal effects in terms of observed distributions; otherwise, the diagrams can be queried to suggest additional observations or auxiliary experiments from which the desired inferences can be obtained. Key words: Causal inference, graph models, interventions treatment effect 1 Introduction The tools introduced in this paper are aimed at helping researchers communicate qualitative assumptions about causeeffect relationships, elucidate the ramifications of such assumptions, and derive causal inferences from a combination...
Ramification and Causality
 Artificial Intelligence
, 1997
"... The ramification problem in the context of commonsense reasoning about actions and change names the challenge to accommodate actions whose execution causes indirect effects. Not being part of the respective action specification, such effects are consequences of general laws describing dependencies b ..."
Abstract

Cited by 149 (20 self)
 Add to MetaCart
The ramification problem in the context of commonsense reasoning about actions and change names the challenge to accommodate actions whose execution causes indirect effects. Not being part of the respective action specification, such effects are consequences of general laws describing dependencies between components of the world description. We present a general approach to this problem which incorporates causality, formalized by directed relations between two single effects stating that, under specific circumstances, the occurrence of the first causes the second. Moreover, necessity of exploiting causal information in this way or a similar is argued by elaborating the limitations of common paradigms employed to handle ramifications, namely, the principle of categorization and the policy of minimal change. Our abstract solution is exemplarily integrated into a specific calculus based on the logic programming paradigm. To apper in: Artificial Intelligence Journal On leave from FG Inte...
Direct and Indirect Effects
, 2005
"... The direct effect of one event on another can be defined and measured by holding constant all intermediate variables between the two. Indirect effects present conceptual and practical difficulties (in nonlinear models), because they cannot be isolated by holding certain variables constant. This pape ..."
Abstract

Cited by 73 (23 self)
 Add to MetaCart
The direct effect of one event on another can be defined and measured by holding constant all intermediate variables between the two. Indirect effects present conceptual and practical difficulties (in nonlinear models), because they cannot be isolated by holding certain variables constant. This paper presents a new way of defining the effect transmitted through a restricted set of paths, without controlling variables on the remaining paths. This permits the assessment of a more natural type of direct and indirect effects, one that is applicable in both linear and nonlinear models and that has broader policyrelated interpretations. The paper establishes conditions under which such assessments can be estimated consistently from experimental and nonexperimental data, and thus extends pathanalytic techniques to nonlinear and nonparametric models.
Axioms of Causal Relevance
 Artificial Intelligence
, 1996
"... This paper develops axioms and formal semantics for statements of the form "X is causally irrelevant to Y in context Z," which we interpret to mean "Changing X will not affect Y if we hold Z constant." The axiomization of causal irrelevance is contrasted with the axiomization of informational irr ..."
Abstract

Cited by 52 (13 self)
 Add to MetaCart
This paper develops axioms and formal semantics for statements of the form "X is causally irrelevant to Y in context Z," which we interpret to mean "Changing X will not affect Y if we hold Z constant." The axiomization of causal irrelevance is contrasted with the axiomization of informational irrelevance, as in "Learning X will not alter our belief in Y , once we know Z." Two versions of causal irrelevance are analyzed, probabilistic and deterministic. We show that, unless stability is assumed, the probabilistic definition yields a very loose structure, that is governed by just two trivial axioms. Under the stability assumption, probabilistic causal irrelevance is isomorphic to path interception in cyclic graphs. Under the deterministic definition, causal irrelevance complies with all of the axioms of path interception in cyclic graphs, with the exception of transitivity. We compare our formalism to that of [Lewis, 1973], and offer a graphical method of proving theorems abou...
Counterfactual Probabilities: Computational Methods, Bounds and Applications
 UNCERTAINTY IN ARTIFICIAL INTELLIGENCE
, 1994
"... Evaluation of counterfactual queries (e.g., "If A were true, would C have been true?") is important to fault diagnosis, planning, and determination of liability. In this paper we present methods for computing the probabilities of such queries using the formulation proposed in [Balke and Pearl, 1994 ..."
Abstract

Cited by 51 (19 self)
 Add to MetaCart
Evaluation of counterfactual queries (e.g., "If A were true, would C have been true?") is important to fault diagnosis, planning, and determination of liability. In this paper we present methods for computing the probabilities of such queries using the formulation proposed in [Balke and Pearl, 1994], where the antecedent of the query is interpreted as an external action that forces the proposition A to be true. When a prior probability is available on the causal mechanisms governing the domain, counterfactual probabilities can be evaluated precisely. However, when causal knowledge is specified as conditional probabilities on the observables, only bounds can computed. This paper develops techniques for evaluating these bounds, and demonstrates their use in two applications: (1) the determination of treatment efficacy from studies in which subjects may choose their own treatment, and (2) the determination of liability in productsafety litigation.
An Axiomatic Characterization of Causal Counterfactuals
, 1998
"... This paper studies the causal interpretation of counterfactual sentences using a modifiable structural equation model. It is shown that two properties of counterfactuals, namely, composition and effectiveness, are sound and complete relative to this interpretation, when recursive (i.e., feedback ..."
Abstract

Cited by 44 (17 self)
 Add to MetaCart
This paper studies the causal interpretation of counterfactual sentences using a modifiable structural equation model. It is shown that two properties of counterfactuals, namely, composition and effectiveness, are sound and complete relative to this interpretation, when recursive (i.e., feedbackless) models are considered. Composition and effectiveness also hold in Lewis's closestworld semantics, which implies that for recursive models the causal interpretation imposes no restrictions beyond those embodied in Lewis's framework. A third property, called reversibility, holds in nonrecursive causal models but not in Lewis's closestworld semantics, which implies that Lewis's axioms do not capture some properties of systems with feedback. Causal inferences based on counterfactual analysis are exemplified and compared to those based on graphical models.
Reasoning With Cause And Effect
, 1999
"... This paper summarizes basic concepts and principles that I have found to be useful in dealing with causal reasoning. The paper is written as a companion to a lecture under the same title, to be presented at IJCAI99, and is intended to supplement the lecture with technical details and pointers to mo ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
This paper summarizes basic concepts and principles that I have found to be useful in dealing with causal reasoning. The paper is written as a companion to a lecture under the same title, to be presented at IJCAI99, and is intended to supplement the lecture with technical details and pointers to more elaborate discussions in the literature. The ruling conception will be to treat causation as a computational schema devised to identify the invariant relationships in the environment, so as to facilitate reliable prediction of the effect of actions. This conception, as well as several of its satellite principles and tools, has been guiding paradigm for several research communities in AI, most notably those connected with causal discovery, troubleshooting, planning under uncertainty and modeling the behavior of physical systems. My hopes are to encourage a broader and more effective usage of causal modeling by explicating these common principles in simple and familiar mathematical form. Af...