Results 1  10
of
16
Pict: A programming language based on the picalculus
 PROOF, LANGUAGE AND INTERACTION: ESSAYS IN HONOUR OF ROBIN MILNER
, 1997
"... The πcalculus offers an attractive basis for concurrent programming. It is small, elegant, and well studied, and supports (via simple encodings) a wide range of highlevel constructs including data structures, higherorder functional programming, concurrent control structures, and objects. Moreover ..."
Abstract

Cited by 254 (8 self)
 Add to MetaCart
The πcalculus offers an attractive basis for concurrent programming. It is small, elegant, and well studied, and supports (via simple encodings) a wide range of highlevel constructs including data structures, higherorder functional programming, concurrent control structures, and objects. Moreover, familiar type systems for the calculus have direct counterparts in the πcalculus, yielding strong, static typing for a highlevel language using the πcalculus as its core. This paper describes Pict, a stronglytyped concurrent programming language constructed in terms of an explicitlytypedcalculus core language.
On reductionbased process semantics
 Theoretical Computer Science
, 1995
"... Abstract. A formulation of semantic theories for processes which is based on reduction relation and equational reasoning is studied. The new construction can induce meaningful theories for processes, both in strong and weak settings. The resulting theories in many cases coincide with, and sometimes ..."
Abstract

Cited by 144 (21 self)
 Add to MetaCart
Abstract. A formulation of semantic theories for processes which is based on reduction relation and equational reasoning is studied. The new construction can induce meaningful theories for processes, both in strong and weak settings. The resulting theories in many cases coincide with, and sometimes generalise, observationbased formulation of behavioural equivalence. The basic construction of reductionbased theories is studied, taking a simple name passing calculus called \nucalculus as an example. Results on other calculi are also briefly discussed.
An Interactionbased Language and its Typing System
 In PARLE’94, volume 817 of LNCS
, 1994
"... We present a small language L and its typing system based on the idea of interaction, one of the important notions in parallel and distributed computing. L is based on, apart from such constructs as parallel composition and process creation, three pairs of communication primitives which use the noti ..."
Abstract

Cited by 109 (17 self)
 Add to MetaCart
We present a small language L and its typing system based on the idea of interaction, one of the important notions in parallel and distributed computing. L is based on, apart from such constructs as parallel composition and process creation, three pairs of communication primitives which use the notion of a session, a semantically atomic chain of communication actions which can interleave with other such chains freely, for highlevel abstraction of interactionbased computing. Three primitives enable programmers to elegantly describe complex interactions among processes with a rigorous type discipline similar to ML [4]. The language is given formal operational semantics and a type inference system, regarding which we prove that if a program is welltyped in the typing system, it never causes runtime error due to type inconsistent communication patterns, offering a new foundation for type discipline in parallel programming languages. 1 Introduction The idea of interaction, that is, rec...
The reflexive CHAM and the joincalculus
 IN PROCEEDINGS OF THE 23RD ACM SYMPOSIUM ON PRINCIPLES OF PROGRAMMING LANGUAGES
"... By adding reflexion to the chemical machine of Berry and Boudol, we obtain a formal model of concurrency that is consistent with mobility and distribution. Our model provides the foundations of a programming language with functional and objectoriented features. It can also be seen as a process calc ..."
Abstract

Cited by 100 (0 self)
 Add to MetaCart
By adding reflexion to the chemical machine of Berry and Boudol, we obtain a formal model of concurrency that is consistent with mobility and distribution. Our model provides the foundations of a programming language with functional and objectoriented features. It can also be seen as a process calculus, the joincalculus, which we prove equivalent to the picalculus of Milner, Parrow and Walker.
Decoding Choice Encodings
, 1999
"... We study two encodings of the asynchronous #calculus with inputguarded choice into its choicefree fragment. One encoding is divergencefree, but refines the atomic commitment of choice into gradual commitment. The other preserves atomicity, but introduces divergence. The divergent encoding is ..."
Abstract

Cited by 97 (5 self)
 Add to MetaCart
We study two encodings of the asynchronous #calculus with inputguarded choice into its choicefree fragment. One encoding is divergencefree, but refines the atomic commitment of choice into gradual commitment. The other preserves atomicity, but introduces divergence. The divergent encoding is fully abstract with respect to weak bisimulation, but the more natural divergencefree encoding is not. Instead, we show that it is fully abstract with respect to coupled simulation, a slightly coarserbut still coinductively definedequivalence that does not enforce bisimilarity of internal branching decisions. The correctness proofs for the two choice encodings introduce a novel proof technique exploiting the properties of explicit decodings from translations to source terms.
The Join Calculus: A Language for Distributed Mobile Programming
 In Proceedings of the Applied Semantics Summer School (APPSEM), Caminha
, 2000
"... In these notes, we give an overview of the join calculus, its semantics, and its equational theory. The join calculus is a language that models distributed and mobile programming. It is characterized by an explicit notion of locality, a strict adherence to local synchronization, and a direct emb ..."
Abstract

Cited by 56 (2 self)
 Add to MetaCart
In these notes, we give an overview of the join calculus, its semantics, and its equational theory. The join calculus is a language that models distributed and mobile programming. It is characterized by an explicit notion of locality, a strict adherence to local synchronization, and a direct embedding of the ML programming language. The join calculus is used as the basis for several distributed languages and implementations, such as JoCaml and functional nets.
Types and subtypes for clientserver interactions
 Proceedings of the 1999 European Symposium on Programming, number 1576 in Lecture Notes in Computer Science
, 1999
"... Abstract. We define an extension of the πcalculus with a static type system which supports highlevel specifications of extended patterns of communication, such as clientserver protocols. Subtyping allows protocol specifications to be extended in order to describe richer behaviour; an implemented ..."
Abstract

Cited by 49 (6 self)
 Add to MetaCart
Abstract. We define an extension of the πcalculus with a static type system which supports highlevel specifications of extended patterns of communication, such as clientserver protocols. Subtyping allows protocol specifications to be extended in order to describe richer behaviour; an implemented server can then be replaced by a refined implementation, without invalidating typecorrectness of the overall system. We use the POP3 protocol as a concrete example of this technique. 1
Operational congruences for reactive systems
, 2001
"... This document consists of a slightly revised and corrected version of a dissertation ..."
Abstract

Cited by 34 (4 self)
 Add to MetaCart
This document consists of a slightly revised and corrected version of a dissertation
Generating Type Systems for Process Graphs
, 1999
"... We introduce a hypergraphbased process calculus with a generic type system. That is, a type system checking an invariant property of processes can be generated by instantiating the original type system. We demonstrate the key ideas behind the type system, namely that there exists a hypergraph morph ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
We introduce a hypergraphbased process calculus with a generic type system. That is, a type system checking an invariant property of processes can be generated by instantiating the original type system. We demonstrate the key ideas behind the type system, namely that there exists a hypergraph morphism from each process graph into its type, and show how it can be used for the analysis of processes. Our examples are input/outputcapabilities, secrecy conditions and avoiding vicious circles occurring in deadlocks. In order to specify the syntax and semantics of the process calculus and the type system, we introduce a method of hypergraph construction using concepts from category theory.