Results 21  30
of
4,210
Bayesian Compressive Sensing
, 2007
"... The data of interest are assumed to be represented as Ndimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signal can be reconstructed accurately using only a small number M ≪ N of basisfunction coefficients associated with B. Compressive sensing ..."
Abstract

Cited by 330 (24 self)
 Add to MetaCart
The data of interest are assumed to be represented as Ndimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signal can be reconstructed accurately using only a small number M ≪ N of basisfunction coefficients associated with B. Compressive sensing is a framework whereby one does not measure one of the aforementioned Ndimensional signals directly, but rather a set of related measurements, with the new measurements a linear combination of the original underlying Ndimensional signal. The number of required compressivesensing measurements is typically much smaller than N, offering the potential to simplify the sensing system. Let f denote the unknown underlying Ndimensional signal, and g a vector of compressivesensing measurements, then one may approximate f accurately by utilizing knowledge of the (underdetermined) linear relationship between f and g, in addition to knowledge of the fact that f is compressible in B. In this paper we employ a Bayesian formalism for estimating the underlying signal f based on compressivesensing measurements g. The proposed framework has the following properties: (i) in addition to estimating the underlying signal f, “error bars ” are also estimated, these giving a measure of confidence in the inverted signal; (ii) using knowledge of the error bars, a principled means is provided for determining when a sufficient
Online learning for matrix factorization and sparse coding
, 2010
"... Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order to ad ..."
Abstract

Cited by 330 (31 self)
 Add to MetaCart
(Show Context)
Sparse coding—that is, modelling data vectors as sparse linear combinations of basis elements—is widely used in machine learning, neuroscience, signal processing, and statistics. This paper focuses on the largescale matrix factorization problem that consists of learning the basis set in order to adapt it to specific data. Variations of this problem include dictionary learning in signal processing, nonnegative matrix factorization and sparse principal component analysis. In this paper, we propose to address these tasks with a new online optimization algorithm, based on stochastic approximations, which scales up gracefully to large data sets with millions of training samples, and extends naturally to various matrix factorization formulations, making it suitable for a wide range of learning problems. A proof of convergence is presented, along with experiments with natural images and genomic data demonstrating that it leads to stateoftheart performance in terms of speed and optimization for both small and large data sets.
Selftaught learning: Transfer learning from unlabeled data
 Proceedings of the Twentyfourth International Conference on Machine Learning
, 2007
"... We present a new machine learning framework called “selftaught learning ” for using unlabeled data in supervised classification tasks. We do not assume that the unlabeled data follows the same class labels or generative distribution as the labeled data. Thus, we would like to use a large number of ..."
Abstract

Cited by 299 (20 self)
 Add to MetaCart
(Show Context)
We present a new machine learning framework called “selftaught learning ” for using unlabeled data in supervised classification tasks. We do not assume that the unlabeled data follows the same class labels or generative distribution as the labeled data. Thus, we would like to use a large number of unlabeled images (or audio samples, or text documents) randomly downloaded from the Internet to improve performance on a given image (or audio, or text) classification task. Such unlabeled data is significantly easier to obtain than in typical semisupervised or transfer learning settings, making selftaught learning widely applicable to many practical learning problems. We describe an approach to selftaught learning that uses sparse coding to construct higherlevel features using the unlabeled data. These features form a succinct input representation and significantly improve classification performance. When using an SVM for classification, we further show how a Fisher kernel can be learned for this representation. 1.
An interiorpoint method for largescale l1regularized logistic regression
 Journal of Machine Learning Research
, 2007
"... Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand ..."
Abstract

Cited by 290 (9 self)
 Add to MetaCart
(Show Context)
Logistic regression with ℓ1 regularization has been proposed as a promising method for feature selection in classification problems. In this paper we describe an efficient interiorpoint method for solving largescale ℓ1regularized logistic regression problems. Small problems with up to a thousand or so features and examples can be solved in seconds on a PC; medium sized problems, with tens of thousands of features and examples, can be solved in tens of seconds (assuming some sparsity in the data). A variation on the basic method, that uses a preconditioned conjugate gradient method to compute the search step, can solve very large problems, with a million features and examples (e.g., the 20 Newsgroups data set), in a few minutes, on a PC. Using warmstart techniques, a good approximation of the entire regularization path can be computed much more efficiently than by solving a family of problems independently.
Sparse Principal Component Analysis
 Journal of Computational and Graphical Statistics
, 2004
"... Principal component analysis (PCA) is widely used in data processing and dimensionality reduction. However, PCA su#ers from the fact that each principal component is a linear combination of all the original variables, thus it is often di#cult to interpret the results. We introduce a new method ca ..."
Abstract

Cited by 279 (6 self)
 Add to MetaCart
(Show Context)
Principal component analysis (PCA) is widely used in data processing and dimensionality reduction. However, PCA su#ers from the fact that each principal component is a linear combination of all the original variables, thus it is often di#cult to interpret the results. We introduce a new method called sparse principal component analysis (SPCA) using the lasso (elastic net) to produce modified principal components with sparse loadings. We show that PCA can be formulated as a regressiontype optimization problem, then sparse loadings are obtained by imposing the lasso (elastic net) constraint on the regression coe#cients. E#cient algorithms are proposed to realize SPCA for both regular multivariate data and gene expression arrays. We also give a new formula to compute the total variance of modified principal components. As illustrations, SPCA is applied to real and simulated data, and the results are encouraging.
The group Lasso for logistic regression
 Journal of the Royal Statistical Society, Series B
, 2008
"... Summary. The group lasso is an extension of the lasso to do variable selection on (predefined) groups of variables in linear regression models. The estimates have the attractive property of being invariant under groupwise orthogonal reparameterizations. We extend the group lasso to logistic regressi ..."
Abstract

Cited by 276 (11 self)
 Add to MetaCart
(Show Context)
Summary. The group lasso is an extension of the lasso to do variable selection on (predefined) groups of variables in linear regression models. The estimates have the attractive property of being invariant under groupwise orthogonal reparameterizations. We extend the group lasso to logistic regression models and present an efficient algorithm, that is especially suitable for high dimensional problems, which can also be applied to generalized linear models to solve the corresponding convex optimization problem. The group lasso estimator for logistic regression is shown to be statistically consistent even if the number of predictors is much larger than sample size but with sparse true underlying structure. We further use a twostage procedure which aims for sparser models than the group lasso, leading to improved prediction performance for some cases. Moreover, owing to the twostage nature, the estimates can be constructed to be hierarchical. The methods are used on simulated and real data sets about splice site detection in DNA sequences.
Consistency of the group lasso and multiple kernel learning
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2007
"... We consider the leastsquare regression problem with regularization by a block 1norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1norm where all spaces have dimension one, where it ..."
Abstract

Cited by 274 (33 self)
 Add to MetaCart
(Show Context)
We consider the leastsquare regression problem with regularization by a block 1norm, i.e., a sum of Euclidean norms over spaces of dimensions larger than one. This problem, referred to as the group Lasso, extends the usual regularization by the 1norm where all spaces have dimension one, where it is commonly referred to as the Lasso. In this paper, we study the asymptotic model consistency of the group Lasso. We derive necessary and sufficient conditions for the consistency of group Lasso under practical assumptions, such as model misspecification. When the linear predictors and Euclidean norms are replaced by functions and reproducing kernel Hilbert norms, the problem is usually referred to as multiple kernel learning and is commonly used for learning from heterogeneous data sources and for non linear variable selection. Using tools from functional analysis, and in particular covariance operators, we extend the consistency results to this infinite dimensional case and also propose an adaptive scheme to obtain a consistent model estimate, even when the necessary condition required for the non adaptive scheme is not satisfied.
A Shrinkage Approach to LargeScale Covariance Matrix Estimation and Implications for Functional Genomics
, 2005
"... ..."
Asymptotics for Lassotype estimators
, 2000
"... this paper, we consider the asymptotic behaviour of regression estimators that minimize the residual sum of squares plus a penalty proportional to ..."
Abstract

Cited by 264 (3 self)
 Add to MetaCart
this paper, we consider the asymptotic behaviour of regression estimators that minimize the residual sum of squares plus a penalty proportional to