Results 1 
3 of
3
Implementing HEAPSORT with n log n  0.9n and QUICKSORT with n log n + 0.2n Comparisons
 ACM Journal of Experimental Algorithms
, 2002
"... With refinements to the WEAKHEAPSORT... ..."
Pushing the Limits in Sequential Sorting
 Proceedings of the 4 th International Workshop on Algorithm Engineering (WAE 2000
, 2000
"... With refinements to the WEAKHEAPSORT algorithm we establish the general and practical relevant sequential sorting algorithm RELAXEDWEAKHEAPSORT executing exactly ndlog ne#2 dlog ne + 1 # n log n # 0:9n comparisons on any given input. The number of transpositions is bounded by n plus the number of ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
With refinements to the WEAKHEAPSORT algorithm we establish the general and practical relevant sequential sorting algorithm RELAXEDWEAKHEAPSORT executing exactly ndlog ne#2 dlog ne + 1 # n log n # 0:9n comparisons on any given input. The number of transpositions is bounded by n plus the number of comparisons. Experiments show that RELAXEDWEAKHEAPSORT only requires O(n) extra bits. Even if this space is not available, with QUICKWEAKHEAPSORT we propose an efficient QUICKSORT variant with n log n+0:2n+ o(n) comparisons on the average. Furthermore, we present data showing that WEAKHEAPSORT, RELAXEDWEAKHEAPSORT and QUICKWEAKHEAPSORT beat other performant QUICKSORT and HEAPSORT variants even for moderate values of n.
Comparative Performance Study of Improved Heap Sort Algorithm on Different Hardware 1
"... Abstract: Problem statement: Several efficient algorithms were developed to cope with the popular task of sorting. Improved heap sort is a new variant of heap sort. Basic idea of new algorithm is similar to classical Heap sort algorithm but it builds heap in another way. The improved heap sort algor ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract: Problem statement: Several efficient algorithms were developed to cope with the popular task of sorting. Improved heap sort is a new variant of heap sort. Basic idea of new algorithm is similar to classical Heap sort algorithm but it builds heap in another way. The improved heap sort algorithm requires nlogn0.788928n comparisons for worst case and nlognn comparisons in average case. This algorithm uses only one comparison at each node. Hardware has impact on performance of an algorithm. Since improved heap sort is a new algorithm, its performance on different hardware is required to be measured. Approach: In this comparative study the mathematical results of improved heap sort were verified experimentally on different hardware. To have some experimental data to sustain this comparison five representative hardware were chosen and code was executed and execution time was noted to verify and analyze the performance. Results: Hardware impact was shown on the performance of improved heap sort algorithm. Performance of algorithm varied for different datasets also. Conclusion: The Improved Heap sort algorithm performance was found better as compared to traditional heap sort on different hardware, but on certain hardware it was found best. Key words: Complexity, performance of algorithms, sorting