Results 1 
2 of
2
Computational Power of Infinite Quantum Parallelism
 pp.2057–2071 in International Journal of Theoretical Physics vol.44:11
, 2005
"... Recent works have independently suggested that quantum mechanics might permit procedures that fundamentally transcend the power of Turing Machines as well as of ‘standard ’ Quantum Computers. These approaches rely on and indicate that quantum mechanics seems to support some infinite variant of class ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
Recent works have independently suggested that quantum mechanics might permit procedures that fundamentally transcend the power of Turing Machines as well as of ‘standard ’ Quantum Computers. These approaches rely on and indicate that quantum mechanics seems to support some infinite variant of classical parallel computing. We compare this new one with other attempts towards hypercomputation by separating (1) its computing capabilities from (2) realizability issues. The first are shown to coincide with recursive enumerability; the second are considered in analogy to ‘existence’ in mathematical logic. KEY WORDS: Hypercomputation; quantum mechanics; recursion theory; infinite parallelism.
BioSystems 77 (2004) 175–194 Biosteps beyond Turing
, 2004
"... Are there ‘biologically computing agents ’ capable to compute Turing uncomputable functions? It is perhaps tempting to dismiss this question with a negative answer. Quite the opposite, for the first time in the literature on molecular computing we contend that the answer is not theoretically negativ ..."
Abstract
 Add to MetaCart
Are there ‘biologically computing agents ’ capable to compute Turing uncomputable functions? It is perhaps tempting to dismiss this question with a negative answer. Quite the opposite, for the first time in the literature on molecular computing we contend that the answer is not theoretically negative. Our results will be formulated in the language of membrane computing (P systems). Some mathematical results presented here are interesting in themselves. In contrast with most speedup methods which are based on nondeterminism, our results rest upon some universality results proved for deterministic P systems. These results will be used for building “accelerated P systems”. In contrast with the case of Turing machines, acceleration is a part of the hardware (not a quality of the environment) and it is realised either by decreasing the size of “reactors ” or by speedingup the communication channels. Consequently, two acceleration postulates of biological inspiration are introduced; each of them poses specific questions to biology. Finally, in a more speculative part of the paper, we will deal with Turing noncomputability activity of the brain and possible forms of (extraterrestrial) intelligence.