Results 1  10
of
14
Survey of clustering algorithms
 IEEE TRANSACTIONS ON NEURAL NETWORKS
, 2005
"... Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the ..."
Abstract

Cited by 483 (4 self)
 Add to MetaCart
(Show Context)
Data analysis plays an indispensable role for understanding various phenomena. Cluster analysis, primitive exploration with little or no prior knowledge, consists of research developed across a wide variety of communities. The diversity, on one hand, equips us with many tools. On the other hand, the profusion of options causes confusion. We survey clustering algorithms for data sets appearing in statistics, computer science, and machine learning, and illustrate their applications in some benchmark data sets, the traveling salesman problem, and bioinformatics, a new field attracting intensive efforts. Several tightly related topics, proximity measure, and cluster validation, are also discussed.
Highdimensional data analysis: The curses and blessings of dimensionality
 AMS CONFERENCE ON MATH CHALLENGES OF THE 21ST CENTURY
, 2000
"... The coming century is surely the century of data. A combination of blind faith and serious purpose makes our society invest massively in the collection and processing of data of all kinds, on scales unimaginable until recently. Hyperspectral Imagery, Internet Portals, Financial tickbytick data, a ..."
Abstract

Cited by 168 (0 self)
 Add to MetaCart
The coming century is surely the century of data. A combination of blind faith and serious purpose makes our society invest massively in the collection and processing of data of all kinds, on scales unimaginable until recently. Hyperspectral Imagery, Internet Portals, Financial tickbytick data, and DNA Microarrays are just a few of the betterknown sources, feeding data in torrential streams into scientific and business databases worldwide. In traditional statistical data analysis, we think of observations of instances of particular phenomena (e.g. instance ↔ human being), these observations being a vector of values we measured on several variables (e.g. blood pressure, weight, height,...). In traditional statistical methodology, we assumed many observations and a few, wellchosen variables. The trend today is towards more observations but even more so, to radically larger numbers of variables – voracious, automatic, systematic collection of hyperinformative detail about each observed instance. We are seeing examples where the observations gathered on individual instances are curves, or spectra, or images, or
The challenges of clustering highdimensional data
 In New Vistas in Statistical Physics: Applications in Econophysics, Bioinformatics, and Pattern Recognition
, 2003
"... Cluster analysis divides data into groups (clusters) for the purposes of summarization or improved understanding. For example, cluster analysis has been used to group related documents for browsing, to find genes and proteins that have similar functionality, or as a means of data compression. While ..."
Abstract

Cited by 20 (0 self)
 Add to MetaCart
(Show Context)
Cluster analysis divides data into groups (clusters) for the purposes of summarization or improved understanding. For example, cluster analysis has been used to group related documents for browsing, to find genes and proteins that have similar functionality, or as a means of data compression. While clustering has a long history and a large number of clustering techniques have been developed in statistics, pattern recognition, data mining, and other fields, significant challenges still remain. In this chapter we provide a short introduction to cluster analysis, and then focus on the challenge of clustering high dimensional data. We present a brief overview of several recent techniques, including a more detailed description of recent work of our own which uses a conceptbased clustering approach. 1
Clustering in Massive Data Sets
 Handbook of massive data sets
, 1999
"... We review the time and storage costs of search and clustering algorithms. We exemplify these, based on casestudies in astronomy, information retrieval, visual user interfaces, chemical databases, and other areas. Sections 2 to 6 relate to nearest neighbor searching, an elemental form of clustering, ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
We review the time and storage costs of search and clustering algorithms. We exemplify these, based on casestudies in astronomy, information retrieval, visual user interfaces, chemical databases, and other areas. Sections 2 to 6 relate to nearest neighbor searching, an elemental form of clustering, and a basis for clustering algorithms to follow. Sections 7 to 11 review a number of families of clustering algorithm. Sections 12 to 14 relate to visual or image representations of data sets, from which a number of interesting algorithmic developments arise.
Treelets — An Adaptive MultiScale Basis for Sparse Unordered Data
"... In many modern applications, including analysis of gene expression and text documents, the data are noisy, highdimensional, and unordered — with no particular meaning to the given order of the variables. Yet, successful learning is often possible due to sparsity: the fact that the data are typicall ..."
Abstract

Cited by 16 (2 self)
 Add to MetaCart
(Show Context)
In many modern applications, including analysis of gene expression and text documents, the data are noisy, highdimensional, and unordered — with no particular meaning to the given order of the variables. Yet, successful learning is often possible due to sparsity: the fact that the data are typically redundant with underlying structures that can be represented by only a few features. In this paper, we present treelets — a novel construction of multiscale bases that extends wavelets to nonsmooth signals. The method is fully adaptive, as it returns a hierarchical tree and an orthonormal basis which both reflect the internal structure of the data. Treelets are especially wellsuited as a dimensionality reduction and feature selection tool prior to regression and classification, in situations where sample sizes are small and the data are sparse with unknown groupings of correlated or collinear variables. The method is also simple to implement and analyze theoretically. Here we describe a variety of situations where treelets perform better than principal component analysis as well as some common variable selection and cluster averaging schemes. We illustrate treelets on a blocked covariance model and on several data sets (hyperspectral image data, DNA microarray data, and internet advertisements) with highly complex dependencies between variables. 1
Symmetry in Data Mining and Analysis: A Unifying View based on Hierarchy
"... Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. The data sets themselves are explicitly linked as a form of representation to an observational or otherwise empirical domain of interest. “Structure ” has long been understood as s ..."
Abstract

Cited by 7 (7 self)
 Add to MetaCart
(Show Context)
Data analysis and data mining are concerned with unsupervised pattern finding and structure determination in data sets. The data sets themselves are explicitly linked as a form of representation to an observational or otherwise empirical domain of interest. “Structure ” has long been understood as symmetry which can take many forms with respect to any transformation, including point, translational, rotational, and many others. Beginning with the role of number theory in expressing data, we show how we can naturally proceed to hierarchical structures. We show how this both encapsulates traditional paradigms in data analysis, and also opens up new perspectives towards issues that are on the order of the day, including data mining of massive, high dimensional, heterogeneous data sets. Linkages with other fields are also discussed including computational logic and symbolic dynamics.
ScaleBased Gaussian Coverings: Combining Intra and Inter Mixture Models in Image Segmentation
, 2009
"... By a “covering ” we mean a Gaussian mixture model fit to observed data. Approximations of the Bayes factor can be availed of to judge model fit to the data within a given Gaussian mixture model. Between families of Gaussian mixture models, we propose the Rényi quadratic entropy as an excellent and t ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
By a “covering ” we mean a Gaussian mixture model fit to observed data. Approximations of the Bayes factor can be availed of to judge model fit to the data within a given Gaussian mixture model. Between families of Gaussian mixture models, we propose the Rényi quadratic entropy as an excellent and tractable model comparison framework. We exemplify this using the segmentation of an MRI image volume, based (1) on a direct Gaussian mixture model applied to the marginal distribution function, and (2) Gaussian model fit through kmeans applied to the 4D multivalued image volume furnished by the wavelet transform. Visual preference for one model over another is not immediate. The Rényi quadratic entropy allows us to show clearly that one of these modelings is superior to the other.
AideMemoire. HighDimensional Data Analysis: The Curses and Blessings of Dimensionality
, 2000
"... The coming century is surely the century of data. A combination of blind faith and serious purpose makes our society invest massively in the collection and processing of data of all kinds, on scales unimaginable until recently. Hyperspectral Imagery, Internet Portals, Financial tickbytick data, an ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
The coming century is surely the century of data. A combination of blind faith and serious purpose makes our society invest massively in the collection and processing of data of all kinds, on scales unimaginable until recently. Hyperspectral Imagery, Internet Portals, Financial tickbytick data, and DNA Microarrays are just a few of the betterknown sources, feeding data in torrential streams into scientific and business databases worldwide. In traditional statistical data analysis, we think of observations of instances of particular phenomena (e.g. instance ↔ human being), these observations being a vector of values we measured on several variables (e.g. blood pressure, weight, height,...). In traditional statistical methodology, we assumed many observations and a few, wellchosen variables. The trend today is towards more observations but even more so, to radically larger numbers of variables – voracious, automatic, systematic collection of hyperinformative detail about each observed instance. We are seeing examples where the observations gathered on individual instances are curves, or spectra, or images, or