Results 1  10
of
68
Google’s MapReduce Programming Model — Revisited
"... Google’s MapReduce programming model serves for processing large data sets in a massively parallel manner. We deliver the first rigorous description of the model including its advancement as Google’s domainspecific language Sawzall. To this end, we reverseengineer the seminal papers on MapReduce a ..."
Abstract

Cited by 82 (1 self)
 Add to MetaCart
(Show Context)
Google’s MapReduce programming model serves for processing large data sets in a massively parallel manner. We deliver the first rigorous description of the model including its advancement as Google’s domainspecific language Sawzall. To this end, we reverseengineer the seminal papers on MapReduce and Sawzall, and we capture our findings as an executable specification. We also identify and resolve some obscurities in the informal presentation given in the seminal papers. We use typed functional programming (specifically Haskell) as a tool for design recovery and executable specification. Our development comprises three components: (i) the basic program skeleton that underlies MapReduce computations; (ii) the opportunities for parallelism in executing MapReduce computations; (iii) the fundamental characteristics of Sawzall’s aggregators as an advancement of the MapReduce approach. Our development does not formalize the more implementational aspects of an actual, distributed execution of MapReduce computations.
Typed contracts for functional programming
 In FLOPS ’06: Functional and Logic Programming: 8th International Symposium
, 2006
"... Abstract. A robust software component fulfills a contract: it expects data satisfying a certain property and promises to return data satisfying another property. The objectoriented community uses the designbycontract approach extensively. Proposals for language extensions that add contracts to hig ..."
Abstract

Cited by 29 (0 self)
 Add to MetaCart
(Show Context)
Abstract. A robust software component fulfills a contract: it expects data satisfying a certain property and promises to return data satisfying another property. The objectoriented community uses the designbycontract approach extensively. Proposals for language extensions that add contracts to higherorder functional programming have appeared recently. In this paper we propose an embedded domainspecific language for typed, higherorder and firstclass contracts, which is both more expressive than previous proposals, and allows for a more informative blame assignment. We take some first steps towards an algebra of contracts, and we show how to define a generic contract combinator for arbitrary algebraic data types. The contract language is implemented as a library in Haskell using the concept of generalised algebraic data types. 1
The Worker/Wrapper Transformation
 Journal of Functional Programming
, 2009
"... The worker/wrapper transformation is a technique for changing the type of a computation, usually with the aim of improving its performance. It has been used by compiler writers for many years, but the technique is little known in the wider functional programming community, and has never been describ ..."
Abstract

Cited by 29 (17 self)
 Add to MetaCart
(Show Context)
The worker/wrapper transformation is a technique for changing the type of a computation, usually with the aim of improving its performance. It has been used by compiler writers for many years, but the technique is little known in the wider functional programming community, and has never been described precisely. In this article we explain, formalise and explore the generality of the worker/wrapper transformation. We also provide a systematic recipe for its use as an equational reasoning technique for improving the performance of programs, and illustrate the power of this recipe using a range of examples. 1
The Expressive Power of Higherorder Types or, Life without CONS
, 2001
"... Compare firstorder functional programs with higherorder programs allowing functions as function parameters. Can the the first program class solve fewer problems than the second? The answer is no: both classes are Turing complete, meaning that they can compute all partial recursive functions. In pa ..."
Abstract

Cited by 29 (1 self)
 Add to MetaCart
Compare firstorder functional programs with higherorder programs allowing functions as function parameters. Can the the first program class solve fewer problems than the second? The answer is no: both classes are Turing complete, meaning that they can compute all partial recursive functions. In particular, higherorder values may be firstorder simulated by use of the list constructor ‘cons’ to build function closures. This paper uses complexity theory to prove some expressivity results about small programming languages that are less than Turing complete. Complexity classes of decision problems are used to characterize the expressive power of functional programming language features. An example: secondorder programs are more powerful than firstorder, since a function f of type &lsqb;Bool&rsqb;〉Bool is computable by a consfree firstorder functional program if and only if f is in PTIME, whereas f is computable by a consfree secondorder program if and only if f is in EXPTIME. Exact characterizations are given for those problems of type &lsqb;Bool&rsqb;〉Bool solvable by programs with several combinations of operations on data: presence or absence of constructors; the order of data values: 0, 1, or higher; and program control structures: general recursion, tail recursion, primitive recursion.
A better XML parser through functional programming
 LNCS
, 2002
"... This paper demonstrates how a higherlevel, declarative view of XML parsing as folding over XML documents has helped to design and implement a better XML parser. By better we mean a fullfeatured, algorithmically optimal, purefunctional parser, which can act as a stream processor. By better we mean ..."
Abstract

Cited by 15 (2 self)
 Add to MetaCart
(Show Context)
This paper demonstrates how a higherlevel, declarative view of XML parsing as folding over XML documents has helped to design and implement a better XML parser. By better we mean a fullfeatured, algorithmically optimal, purefunctional parser, which can act as a stream processor. By better we mean an ecient SAX parser that is easy to use, a parser that does not burden an application with the maintenance of a global state across several callbacks, a parser that eliminates classes of possible application errors. This paper describes such better XML parsers...
Factorising Folds for Faster Functions
"... The worker/wrapper transformation is a general technique for improving the performance of recursive programs by changing their types. The previous formalisation (Gill & Hutton, 2009) was based upon a simple fixed point semantics of recursion. In this article we develop a more structured approach ..."
Abstract

Cited by 15 (11 self)
 Add to MetaCart
The worker/wrapper transformation is a general technique for improving the performance of recursive programs by changing their types. The previous formalisation (Gill & Hutton, 2009) was based upon a simple fixed point semantics of recursion. In this article we develop a more structured approach, based upon initial algebra semantics. In particular, we show how the worker/wrapper transformation can be applied to programs defined using the structured pattern of recursion captured by fold operators, and illustrate our new technique with a number of examples.
Metatheory à la carte
 In POPL ’13
, 2013
"... Formalizing metatheory, or proofs about programming languages, in a proof assistant has many wellknown benefits. However, the considerable effort involved in mechanizing proofs has prevented it from becoming standard practice. This cost can be amortized by reusing as much of an existing formalizat ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
(Show Context)
Formalizing metatheory, or proofs about programming languages, in a proof assistant has many wellknown benefits. However, the considerable effort involved in mechanizing proofs has prevented it from becoming standard practice. This cost can be amortized by reusing as much of an existing formalization as possible when building a new language or extending an existing one. Unfortunately reuse of components is typically adhoc, with the language designer cutting and pasting existing definitions and proofs, and expending considerable effort to patch up the results. This paper presents a more structured approach to the reuse of formalizations of programming language semantics through the composition of modular definitions and proofs. The key contribution is the development of an approach to induction for extensible Church encodings which uses a novel reinterpretation of the universal property of folds. These encodings provide the foundation for a framework, formalized in Coq, which uses type classes to automate the composition of proofs from modular components. Several interesting language features, including binders and general recursion, illustrate the capabilities of our framework. We reuse these features to build fully mechanized definitions and proofs for a number of languages, including a version of miniML. Bounded induction enables proofs of properties for noninductive semantic functions, and mediating type classes enable proof adaptation for more featurerich languages. 1.
Proof Pearl: Defining Functions Over Finite Sets. volume 3603 of LNCS
 Information and Computation
, 2005
"... Abstract. Structural recursion over sets is meaningful only if the result is independent of the order in which the set’s elements are enumerated. This paper outlines a theory of function definition for finite sets, based on the fold functionals often used with lists. The fold functional is introduce ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
(Show Context)
Abstract. Structural recursion over sets is meaningful only if the result is independent of the order in which the set’s elements are enumerated. This paper outlines a theory of function definition for finite sets, based on the fold functionals often used with lists. The fold functional is introduced as a relation, which is then shown to denote a function under certain conditions. Applications include summation and maximum. The theory has been formalized using Isabelle/HOL. 1
When is a function a fold or an unfold
 Coalgebraic Methods in Computer Science, number 44.1 in Electronic Notes in Theoretical Computer Science
, 2001
"... We give a necessary and sufficient condition for when a settheoretic function can be written using the recursion operator fold, and a dual condition for the recursion operator unfold. The conditions are simple, practically useful, and generic in the underlying datatype. 1 ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
(Show Context)
We give a necessary and sufficient condition for when a settheoretic function can be written using the recursion operator fold, and a dual condition for the recursion operator unfold. The conditions are simple, practically useful, and generic in the underlying datatype. 1
Proof Methods for Structured Corecursive Programs
, 1999
"... Corecursive programs produce values of greatest fixpoint types, in contrast to recursive programs, which consume values of least fixpoint types. There are a number of widely used methods for proving properties of corecursive programs, including fixpoint induction, the take lemma, and coinduction. Ho ..."
Abstract

Cited by 10 (3 self)
 Add to MetaCart
(Show Context)
Corecursive programs produce values of greatest fixpoint types, in contrast to recursive programs, which consume values of least fixpoint types. There are a number of widely used methods for proving properties of corecursive programs, including fixpoint induction, the take lemma, and coinduction. However, these methods are all rather lowlevel, in the sense that they do not exploit the common structure that is often present in corecursive definitions. We argue for a more structured approach to proving properties of corecursive programs. In particular, we show that by writing corecursive programs using an operator called unfold that encapsulates a common pattern of corecursive de nition, we can then use highlevel algebraic properties of this operator to conduct proofs in a purely calculational style that avoids the use of either induction or coinduction.