Results 1  10
of
258
Quantum Gravity
, 2004
"... We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theor ..."
Abstract

Cited by 572 (11 self)
 Add to MetaCart
We describe the basic assumptions and key results of loop quantum gravity, which is a background independent approach to quantum gravity. The emphasis is on the basic physical principles and how one deduces predictions from them, at a level suitable for physicists in other areas such as string theory, cosmology, particle physics, astrophysics and condensed matter physics. No details are given, but references are provided to guide the interested reader to the literature. The present state of knowledge is summarized in a list of 35 key results on topics including the hamiltonian and path integral quantizations, coupling to matter, extensions to supergravity and higher dimensional theories, as well as applications to black holes, cosmology and Plank scale phenomenology. We describe the near term prospects for observational tests of quantum theories of gravity and the expectations that loop quantum gravity may provide predictions for their outcomes. Finally, we provide answers to frequently asked questions and a list of key open problems.
Spin Foam Models for Quantum Gravity
, 2008
"... In this article we review the present status of the spin foam formulation of nonperturbative (background independent) quantum gravity. The article is divided in two parts. In the first part we present a general introduction to the main ideas emphasizing their motivations from various perspectives. R ..."
Abstract

Cited by 123 (7 self)
 Add to MetaCart
In this article we review the present status of the spin foam formulation of nonperturbative (background independent) quantum gravity. The article is divided in two parts. In the first part we present a general introduction to the main ideas emphasizing their motivations from various perspectives. Riemannian 3dimensional gravity is used as a simple example to illustrate conceptual issues and the main goals of the approach. The main features of the various existing models for 4dimensional gravity are also presented here. We conclude with a discussion of important questions to be addressed in four dimensions (gauge invariance, discretization independence, etc.). In the second part we concentrate on the definition of the BarrettCrane model. We present the main results obtained in this framework from a critical perspective. Finally we review the combinatorial formulation of spin foam models based on the dual group field theory technology. We present the BarrettCrane model in this framework and review the finiteness results obtained for both its Riemannian as well
Three dimensional Loop Quantum Gravity: physical scalar product and spin foam models
 35 K. Noui, “Three dimensional Loop Quantum Gravity: particles and the Quantum
, 2005
"... In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three dimensional Riemannian Loop Quantum Gravity coupled to massive spinless point particles. We make use of this result to propose a model for a selfgravitating quantum field theory (massive spinless ..."
Abstract

Cited by 76 (14 self)
 Add to MetaCart
(Show Context)
In a companion paper, we have emphasized the role of the Drinfeld double DSU(2) in the context of three dimensional Riemannian Loop Quantum Gravity coupled to massive spinless point particles. We make use of this result to propose a model for a selfgravitating quantum field theory (massive spinless noncausal scalar field) in three dimensional Riemannian space. We start by constructing the Fock space of the free selfgravitating field: the vacuum is the unique DSU(2) invariant state, oneparticle states correspond to DSU(2) unitary irreducible simple representations and any multiparticles states is obtained as the symmetrized tensor product between simple representations. The associated quantum field is defined by the usual requirement of covariance under DSU(2). Then, we introduce a DSU(2)invariant selfinteracting potential (the obtained model is a Group Field Theory) and compute explicitely the lowest order terms (in the selfinteraction coupling constant λ) of the propagator and of the threepoints function. Finally, we compute the lowest order quantum gravity corrections (in the Newton constant G) to the propagator and to the threepoints function.
Mathematical structure of loop quantum cosmology
 Adv. Theor. Math. Phys
, 2003
"... Applications of Riemannian quantum geometry to cosmology have had notable successes. In particular, the fundamental discreteness underlying quantum geometry has led to a natural resolution of the big bang singularity. However, the precise mathematical structure underlying loop quantum cosmology and ..."
Abstract

Cited by 74 (33 self)
 Add to MetaCart
(Show Context)
Applications of Riemannian quantum geometry to cosmology have had notable successes. In particular, the fundamental discreteness underlying quantum geometry has led to a natural resolution of the big bang singularity. However, the precise mathematical structure underlying loop quantum cosmology and the sense in which it implements the full quantization program in a symmetry reduced model has not been made explicit. The purpose of this paper is to address these issues, thereby providing a firmer mathematical and conceptual foundation to the subject. 1
Loop quantum cosmology
, 2006
"... Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e. the fact that the backward evolution of a classical spacetime inevitably comes to an end after a ..."
Abstract

Cited by 48 (11 self)
 Add to MetaCart
Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e. the fact that the backward evolution of a classical spacetime inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the surrounding spacetime is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend spacetime beyond classical singularities. One main question is how these homogeneous scenarios are related to full loop quantum gravity, which can be dealt with at the level of distributional symmetric states. Finally, the new structure of spacetime arising in loop quantum gravity and its application to cosmology sheds new light on more general issues such as time.
Quantum gravity in terms of topological observables
"... We recast the action principle of four dimensional General Relativity so that it becomes amenable for perturbation theory which doesn’t break general covariance. The coupling constant becomes dimensionless (GNewtonΛ) and extremely small 10 −120. We give an expression for the generating functional of ..."
Abstract

Cited by 45 (6 self)
 Add to MetaCart
(Show Context)
We recast the action principle of four dimensional General Relativity so that it becomes amenable for perturbation theory which doesn’t break general covariance. The coupling constant becomes dimensionless (GNewtonΛ) and extremely small 10 −120. We give an expression for the generating functional of perturbation theory. We show that the partition function of quantum General Relativity can be expressed as an expectation value of a certain topologically invariant observable. This sets up a framework in which quantum gravity can be studied perturbatively using the techniques of topological quantum field theory. 1
The case for background independence
, 2005
"... The aim of this paper is to explain carefully the arguments behind the assertion that the correct quantum theory of gravity must be background independent. We begin by recounting how the debate over whether quantum gravity must be background independent is a continuation of a longstanding argument ..."
Abstract

Cited by 37 (1 self)
 Add to MetaCart
(Show Context)
The aim of this paper is to explain carefully the arguments behind the assertion that the correct quantum theory of gravity must be background independent. We begin by recounting how the debate over whether quantum gravity must be background independent is a continuation of a longstanding argument in the history of physics and philosophy over whether space and time are relational or absolute. This leads to a careful statement of what physicists mean when we speak of background independence. Given this we can characterize the precise sense in which general relativity is a background independent theory. The leading background independent approaches to quantum gravity are then discussed, including causal set models, loop quantum gravity and dynamical triangulations and their main achievements are summarized along with the problems that remain open. Some first attempts to cast string/M theory into a background independent formulation are also mentioned. The relational/absolute debate has implications also for other issues such as unification and how the parameters of the standard models of physics and cosmology are to be explained. The recent issues concerning the string theory landscape are reviewed and it is argued that they can only be resolved within the context of a background independent formulation. Finally, we review some recent proposals to make quantum theory more relational. This is partly based on the text of a talk given to a meeting of the British Association for the Philosophy of Science, in July 2004, under the title ”The relational idea in physics and cosmology.”