Results 1 - 10
of
376
Opinion Mining and Sentiment Analysis
, 2008
"... An important part of our information-gathering behavior has always been to find out what other people think. With the growing availability and popularity of opinion-rich resources such as online review sites and personal blogs, new opportunities and challenges arise as people now can, and do, active ..."
Abstract
-
Cited by 749 (3 self)
- Add to MetaCart
An important part of our information-gathering behavior has always been to find out what other people think. With the growing availability and popularity of opinion-rich resources such as online review sites and personal blogs, new opportunities and challenges arise as people now can, and do, actively use information technologies to seek out and understand the opinions of others. The sudden eruption of activity in the area of opinion mining and sentiment analysis, which deals with the computational treatment of opinion, sentiment, and subjectivity in text, has thus occurred at least in part as a direct response to the surge of interest in new systems that deal directly with opinions as a first-class object. This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems. Our focus is on methods that seek to address the new challenges raised by sentiment-aware applications, as compared to those that are already present in more traditional fact-based analysis. We include materialon summarization of evaluative text and on broader issues regarding privacy, manipulation, and economic impact that the development of opinion-oriented information-access services gives rise to. To facilitate future work, a discussion of available resources, benchmark datasets, and evaluation campaigns is also provided.
Sentiment analysis and subjectivity
- Handbook of Natural Language Processing, Second Edition. Taylor and Francis Group, Boca
, 2010
"... Textual information in the world can be broadly categorized into two main types: facts and opinions. Facts are objective expressions about entities, events and their properties. Opinions are usually subjective expressions that describe people’s sentiments, appraisals or feelings toward entities, eve ..."
Abstract
-
Cited by 128 (9 self)
- Add to MetaCart
(Show Context)
Textual information in the world can be broadly categorized into two main types: facts and opinions. Facts are objective expressions about entities, events and their properties. Opinions are usually subjective expressions that describe people’s sentiments, appraisals or feelings toward entities, events and their properties. The concept of opinion is very broad. In this chapter, we only focus on opinion expressions that convey people’s positive or negative sentiments. Much of the existing research on textual information processing has been focused on mining and retrieval of factual information, e.g., information retrieval, Web search, text classification, text clustering and many other text mining and natural language processing tasks. Little work had been done on the processing of opinions until only recently. Yet, opinions are so important that whenever we need to make a decision we want to hear others ’ opinions. This is not only true for individuals but also true for organizations. One of the main reasons for the lack of study on opinions is the fact that there was little opinionated text available before the World Wide Web. Before the Web, when an individual needed to make a decision, he/she typically asked for opinions from friends and families. When an organization wanted to find the opinions or sentiments of the general public about its products and services, it conducted opinion polls, surveys, and focus groups. However, with the Web, especially with the explosive growth of the usergenerated
Enhanced Sentiment Learning Using Twitter Hashtags and Smileys
"... Automated identification of diverse sentiment types can be beneficial for many NLP systems such as review summarization and public media analysis. In some of these systems there is an option of assigning a sentiment value to a single sentence or a very short text. In this paper we propose a supervis ..."
Abstract
-
Cited by 120 (3 self)
- Add to MetaCart
(Show Context)
Automated identification of diverse sentiment types can be beneficial for many NLP systems such as review summarization and public media analysis. In some of these systems there is an option of assigning a sentiment value to a single sentence or a very short text. In this paper we propose a supervised sentiment classification framework which is based on data from Twitter, a popular microblogging service. By utilizing 50 Twitter tags and 15 smileys as sentiment labels, this framework avoids the need for labor intensive manual annotation, allowing identification and classification of diverse sentiment types of short texts. We evaluate the contribution of different feature types for sentiment classification and show that our framework successfully identifies sentiment types of untagged sentences. The quality of the sentiment identification was also confirmed by human judges. We also explore dependencies and overlap between different sentiment types represented by smileys and Twitter hashtags. 1
Twitter sentiment analysis: The good the bad and the omg
- In The International AAAI Conference on Weblogs and Social
, 2011
"... In this paper, we investigate the utility of linguistic features for detecting the sentiment of Twitter messages. We evaluate the usefulness of existing lexical resources as well as features that capture information about the informal and creative lan-guage used in microblogging. We take a supervise ..."
Abstract
-
Cited by 112 (5 self)
- Add to MetaCart
(Show Context)
In this paper, we investigate the utility of linguistic features for detecting the sentiment of Twitter messages. We evaluate the usefulness of existing lexical resources as well as features that capture information about the informal and creative lan-guage used in microblogging. We take a supervised approach to the problem, but leverage existing hashtags in the Twitter data for building training data.
Exploring millions of footprints in location sharing services
- In ICWSM 2011
"... Location sharing services (LSS) like Foursquare, Gowalla, and Facebook Places support hundreds of millions of userdriven footprints (i.e., “checkins”). Those global-scale footprints provide a unique opportunity to study the social and temporal characteristics of how people use these services and to ..."
Abstract
-
Cited by 94 (5 self)
- Add to MetaCart
Location sharing services (LSS) like Foursquare, Gowalla, and Facebook Places support hundreds of millions of userdriven footprints (i.e., “checkins”). Those global-scale footprints provide a unique opportunity to study the social and temporal characteristics of how people use these services and to model patterns of human mobility, which are significant factors for the design of future mobile+location-based services, traffic forecasting, urban planning, as well as epidemiological models of disease spread. In this paper, we investigate 22 million checkins across 220,000 users and report a quantitative assessment of human mobility patterns by analyzing the spatial, temporal, social, and textual aspects associated with these footprints. We find that: (i) LSS users follow the “Lèvy Flight ” mobility pattern and adopt periodic behaviors; (ii) While geographic and economic constraints affect mobility patterns, so does individual social status; and (iii) Content and sentiment-based analysis of posts associated with checkins can provide a rich source of context for better understanding how users engage with these services. 1
Sentiment strength detection in short informal text
- J AM SOC INF SCI TECHNOL. 2010 DECEMBER;61:2544–2558
, 2010
"... A huge number of informal messages are posted every day in social network sites, blogs and discussion forums. Emotions seem to be frequently important in these texts for expressing friendship, showing social support or as part of online arguments. Algorithms to identify sentiment and sentiment stren ..."
Abstract
-
Cited by 92 (7 self)
- Add to MetaCart
A huge number of informal messages are posted every day in social network sites, blogs and discussion forums. Emotions seem to be frequently important in these texts for expressing friendship, showing social support or as part of online arguments. Algorithms to identify sentiment and sentiment strength are needed to help understand the role of emotion in this informal communication and also to identify inappropriate or anomalous affective utterances, potentially associated with threatening behaviour to the self or others. Nevertheless, existing sentiment detection algorithms tend to be commercially-oriented, designed to identify opinions about products rather than user behaviours. This article partly fills this gap with a new algorithm, SentiStrength, to extract sentiment strength from informal English text, using new methods to exploit the de-facto grammars and spelling styles of cyberspace. Applied to MySpace comments and with a lookup table of term sentiment strengths optimised by machine learning, SentiStrength is able to predict positive emotion with 60.6 % accuracy and negative emotion with 72.8 % accuracy, both based upon strength scales of 1-5. The former, but not the latter, is better than baseline and a wide range of general machine learning approaches.
Latent Aspect Rating Analysis on Review Text Data: A Rating Regression Approach
"... In this paper, we define and study a new opinionated text data analysis problem called Latent Aspect Rating Analysis (LARA), which aims at analyzing opinions expressed about an entity in an online review at the level of topical aspects to discover each individual reviewer’s latent opinion on each as ..."
Abstract
-
Cited by 53 (4 self)
- Add to MetaCart
(Show Context)
In this paper, we define and study a new opinionated text data analysis problem called Latent Aspect Rating Analysis (LARA), which aims at analyzing opinions expressed about an entity in an online review at the level of topical aspects to discover each individual reviewer’s latent opinion on each aspect as well as the relative emphasis on different aspects when forming the overall judgment of the entity. We propose a novel probabilistic rating regression model to solve this new text mining problem in a general way. Empirical experiments on a hotel review data set show that the proposed latent rating regression model can effectively solve the problem of LARA, and that the detailed analysis of opinions at the level of topical aspects enabled by the proposed model can support a wide range of application tasks, such as aspect opinion summarization, entity ranking based on aspect ratings, and analysis of reviewers rating behavior.
“I regretted the minute I pressed share”: A Qualitative Study of Regrets on Facebook
"... We investigate regrets associated with users ’ posts on a popular social networking site. Our findings are based on a series of interviews, user diaries, and online surveys involving 569 American Facebook users. Their regrets revolved around sensitive topics, content with strong sentiment, lies, and ..."
Abstract
-
Cited by 50 (11 self)
- Add to MetaCart
(Show Context)
We investigate regrets associated with users ’ posts on a popular social networking site. Our findings are based on a series of interviews, user diaries, and online surveys involving 569 American Facebook users. Their regrets revolved around sensitive topics, content with strong sentiment, lies, and secrets. Our research reveals several possible causes of why users make posts that they later regret: (1) they want to be perceived in favorable ways, (2) they do not think about their reason for posting or the consequences of their posts, (3) they misjudge the culture and norms within their social circles, (4) they are in a “hot ” state of high emotion when posting, or under the influence of drugs or alcohol, (5) their postings are seen by an unintended audience, (6) they do not foresee how their posts could be perceived by people within their intended audience, and (7) they misunderstand or misuse the Facebook platform. Some reported incidents had serious repercussions, such as breaking up relationships or job losses. We discuss methodological considerations in studying negative experiences associated with social networking posts, as well as ways of helping users of social networking sites avoid such regrets.