Results 1  10
of
29
Strong Normalisation of CutElimination in Classical Logic
, 2000
"... In this paper we present a strongly normalising cutelimination procedure for classical logic. This procedure adapts Gentzen's standard cutreductions, but is less restrictive than previous strongly normalising cutelimination procedures. In comparison, for example, with works by Dragalin and Danos ..."
Abstract

Cited by 35 (4 self)
 Add to MetaCart
In this paper we present a strongly normalising cutelimination procedure for classical logic. This procedure adapts Gentzen's standard cutreductions, but is less restrictive than previous strongly normalising cutelimination procedures. In comparison, for example, with works by Dragalin and Danos et al., our procedure requires no special annotations on formulae and allows cutrules to pass over other cutrules. In order to adapt the notion of symmetric reducibility candidates for proving the strong normalisation property, we introduce a novel term assignment for sequent proofs of classical logic and formalise cutreductions as term rewriting rules.
A Linear Spine Calculus
 Journal of Logic and Computation
, 2003
"... We present the spine calculus S ##&# as an efficient representation for the linear #calculus # ##&# which includes unrestricted functions (#), linear functions (#), additive pairing (&), and additive unit (#). S ##&# enhances the representation of Church's simply typed #calculus by enforcing ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
We present the spine calculus S ##&# as an efficient representation for the linear #calculus # ##&# which includes unrestricted functions (#), linear functions (#), additive pairing (&), and additive unit (#). S ##&# enhances the representation of Church's simply typed #calculus by enforcing extensionality and by incorporating linear constructs. This approach permits procedures such as unification to retain the efficient head access that characterizes firstorder term languages without the overhead of performing #conversions at run time. Applications lie in proof search, logic programming, and logical frameworks based on linear type theories. It is also related to foundational work on term assignment calculi for presentations of the sequent calculus. We define the spine calculus, give translations of # ##&# into S ##&# and viceversa, prove their soundness and completeness with respect to typing and reductions, and show that the typable fragment of the spine calculus is strongly normalizing and admits unique canonical, i.e. ##normal, forms.
Permutability of Proofs in Intuitionistic Sequent Calculi
, 1996
"... We prove a folklore theorem, that two derivations in a cutfree sequent calculus for intuitionistic propositional logic (based on Kleene's G3) are interpermutable (using a set of basic "permutation reduction rules" derived from Kleene's work in 1952) iff they determine the same natural deductio ..."
Abstract

Cited by 23 (4 self)
 Add to MetaCart
We prove a folklore theorem, that two derivations in a cutfree sequent calculus for intuitionistic propositional logic (based on Kleene's G3) are interpermutable (using a set of basic "permutation reduction rules" derived from Kleene's work in 1952) iff they determine the same natural deduction. The basic rules form a confluent and weakly normalising rewriting system. We refer to Schwichtenberg's proof elsewhere that a modification of this system is strongly normalising. Key words: intuitionistic logic, proof theory, natural deduction, sequent calculus. 1 Introduction There is a folklore theorem that two intuitionistic sequent calculus derivations are "really the same" iff they are interpermutable, using permutations as described by Kleene in [13]. Our purpose here is to make precise and prove such a "permutability theorem". Prawitz [18] showed how intuitionistic sequent calculus derivations determine natural deductions, via a mapping ' from LJ to NJ (here we consider only ...
LJQ: a strongly focused calculus for intuitionistic logic
 COMPUTABILITY IN EUROPE 2006, VOLUME 3988 OF LNCS
, 2006
"... LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premisss of the usual left introduction rule for implication. We discuss its history (going back to about 1950, or beyond), present the underlying theory and its applications both to terminating proof ..."
Abstract

Cited by 18 (1 self)
 Add to MetaCart
LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premisss of the usual left introduction rule for implication. We discuss its history (going back to about 1950, or beyond), present the underlying theory and its applications both to terminating proofsearch calculi and to callbyvalue reduction in lambda calculus.
Completing Herbelin’s programme
"... In 1994 Herbelin started and partially achieved the programme of showing that, for intuitionistic implicational logic, there is a CurryHoward interpretation of sequent calculus into a variant of the λcalculus, specifically a variant which manipulates formally “applicative contexts” and inverts t ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
In 1994 Herbelin started and partially achieved the programme of showing that, for intuitionistic implicational logic, there is a CurryHoward interpretation of sequent calculus into a variant of the λcalculus, specifically a variant which manipulates formally “applicative contexts” and inverts the associativity of “applicative terms”. Herbelin worked with a fragment of sequent calculus with constraints on left introduction. In this paper we complete Herbelin’s programme for full sequent calculus, that is, sequent calculus without the mentioned constraints, but where permutative conversions necessarily show up. This requires the introduction of a lambdalike calculus for full sequent calculus and an extension of natural deduction that gives meaning to “applicative contexts” and “applicative terms”. Such extension is a calculus with modus ponens and primitive substitution that refines von Plato’s natural deduction; it is also a “coercion calculus”, in the sense of Cervesato and Pfenning. The prooftheoretical outcome is noteworthy: the puzzling relationship between cut and substitution is settled; and cutelimination in sequent calculus is proven isomorphic to normalisation in the proposed natural deduction system. The isomorphism is the mapping that inverts the associativity of applicative terms.
An isomorphism between a fragment of sequent calculus and an extension of natural deduction
"... ..."
Proof Search in Constructive Logics
 In Sets and proofs
, 1998
"... We present an overview of some sequent calculi organised not for "theoremproving" but for proof search, where the proofs themselves (and the avoidance of known proofs on backtracking) are objects of interest. The main calculus discussed is that of Herbelin [1994] for intuitionistic logic, which ..."
Abstract

Cited by 7 (2 self)
 Add to MetaCart
We present an overview of some sequent calculi organised not for "theoremproving" but for proof search, where the proofs themselves (and the avoidance of known proofs on backtracking) are objects of interest. The main calculus discussed is that of Herbelin [1994] for intuitionistic logic, which extends methods used in hereditary Harrop logic programming; we give a brief discussion of some similar calculi for other logics. We also point to some related work on permutations in intuitionistic Gentzen sequent calculi that clarifies the relationship between such calculi and natural deduction. 1 Introduction It is widely held that ordinary logic programming is based on classical logic, with a Tarskistyle semantics (answering questions "What judgments are provable?") rather than a Heytingstyle semantics (answering questions like "What are the proofs, if any, of each judgment?"). If one adopts the latter style (equivalently, the BHK interpretation: see [35] for details) by regardi...
Callbyvalue λcalculus and LJQ
 LEN06] S. LENGRAND. NORMALISATION & EQUIVALENCE IN PROOF THEORY & TYPE THEORY
, 2007
"... LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premiss of the usual left introduction rule for implication. In a previous paper we discussed its history (going back to about 1950, or beyond) and presented its basic theory and some applications; her ..."
Abstract

Cited by 6 (1 self)
 Add to MetaCart
LJQ is a focused sequent calculus for intuitionistic logic, with a simple restriction on the first premiss of the usual left introduction rule for implication. In a previous paper we discussed its history (going back to about 1950, or beyond) and presented its basic theory and some applications; here we discuss in detail its relation to callbyvalue reduction in lambda calculus, establishing a connection between LJQ and the CBV calculus λC of Moggi. In particular, we present an equational correspondence between these two calculi forming a bijection between the two sets of normal terms, and allowing reductions in each to be simulated by reductions in the other.
On focusing and polarities in linear logic and intuitionistic logic
, 2006
"... There are a number of cutfree sequent calculus proof systems known that are complete for firstorder intuitionistic logic. Proofs in these different systems can vary a great deal from one another. We are interested in providing a flexible and unifying framework that can collect together important a ..."
Abstract

Cited by 6 (2 self)
 Add to MetaCart
There are a number of cutfree sequent calculus proof systems known that are complete for firstorder intuitionistic logic. Proofs in these different systems can vary a great deal from one another. We are interested in providing a flexible and unifying framework that can collect together important aspects of many of these proof systems. First, we suggest that one way to unify these proof systems is to first translate intuitionistic logic formulas into linear logic formulas, then assign a bias (positive or negative) to atomic formulas, and then examine the nature of focused proofs in the resulting linear logic setting. Second, we provide a single focusing proof system for intuitionistic logic and show that these other intuitionistic proof systems can be accounted for by assigning bias to atomic formulas and by inserting certain markers that halt focusing on formulas. Using either approach, we are able to account for proof search mechanisms that allow for forwardchaining (programdirected search), backwardchaining (goaldirected search), and combinations of these two. The keys to developing this kind of proof system for intuitionistic logic involves using Andreoli’s completeness result for focusing proofs and Girard’s notion of polarity used in his LC and LU proof systems. 1
Strong normalisation for a gentzenlike cutelimination procedure
 In TLCA
, 2001
"... Abstract. In this paper we introduce a cutelimination procedure for classical logic, which is both strongly normalising and consisting of local proof transformations. Traditional cutelimination procedures, including the one by Gentzen, are formulated so that they only rewrite neighbouring inferenc ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
Abstract. In this paper we introduce a cutelimination procedure for classical logic, which is both strongly normalising and consisting of local proof transformations. Traditional cutelimination procedures, including the one by Gentzen, are formulated so that they only rewrite neighbouring inference rules; that is they use local proof transformations. Unfortunately, such local proof transformation, if defined naïvely, break the strong normalisation property. Inspired by work of Bloo and Geuvers concerning the λxcalculus, we shall show that a simple trick allows us to preserve this property in our cutelimination procedure. We shall establish this property using the recursive path ordering by Dershowitz.