Results 1  10
of
79
Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol with active expressions
 ALGOLLIKE LANGUAGES
, 1997
"... The manipulation of objects with state which changes over time is allpervasive in computing. Perhaps the simplest example of such objects are the program variables of classical imperative languages. An important strand of work within the study of such languages, pioneered by John Reynolds, focusses ..."
Abstract

Cited by 103 (18 self)
 Add to MetaCart
The manipulation of objects with state which changes over time is allpervasive in computing. Perhaps the simplest example of such objects are the program variables of classical imperative languages. An important strand of work within the study of such languages, pioneered by John Reynolds, focusses on "Idealized Algol", an elegant synthesis of imperative and functional features. We present a novel semantics for Idealized Algol using games, which is quite unlike traditional denotational models of state. The model takes into account the irreversibility of changes in state, and makes explicit the difference between copying and sharing of entities. As a formal measure of the accuracy of our model, we obtain a full abstraction theorem for Idealized Algol with active expressions.
A Mixed Linear and NonLinear Logic: Proofs, Terms and Models (Preliminary Report)
, 1994
"... Intuitionistic linear logic regains the expressive power of intuitionistic logic through the ! (`of course') modality. Benton, Bierman, Hyland and de Paiva have given a term assignment system for ILL and an associated notion of categorical model in which the ! modality is modelled by a comonad satis ..."
Abstract

Cited by 96 (3 self)
 Add to MetaCart
Intuitionistic linear logic regains the expressive power of intuitionistic logic through the ! (`of course') modality. Benton, Bierman, Hyland and de Paiva have given a term assignment system for ILL and an associated notion of categorical model in which the ! modality is modelled by a comonad satisfying certain extra conditions. Ordinary intuitionistic logic is then modelled in a cartesian closed category which arises as a full subcategory of the category of coalgebras for the comonad. This paper attempts to explain the connection between ILL and IL more directly and symmetrically by giving a logic, term calculus and categorical model for a system in which the linear and nonlinear worlds exist on an equal footing, with operations allowing one to pass in both directions. We start from the categorical model of ILL given by Benton, Bierman, Hyland and de Paiva and show that this is equivalent to having a symmetric monoidal adjunction between a symmetric monoidal closed category and a cartesian closed category. We then derive both a sequent calculus and a natural deduction presentation of the logic corresponding to the new notion of model.
Models of Sharing Graphs: A Categorical Semantics of let and letrec
, 1997
"... To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sha ..."
Abstract

Cited by 62 (10 self)
 Add to MetaCart
To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sharing graphs. The simplest is firstorder acyclic sharing graphs represented by letsyntax, and others are extensions with higherorder constructs (lambda calculi) and/or cyclic sharing (recursive letrec binding). For each of four settings, we provide the equational theory for representing the sharing graphs, and identify the class of categorical models which are shown to be sound and complete for the theory. The emphasis is put on the algebraic nature of sharing graphs, which leads us to the semantic account of them. We describe the models in terms of the notions of symmetric monoidal categories and functors, additionally with symmetric monoidal adjunctions and traced
Computational types from a logical perspective
 Journal of Functional Programming
, 1998
"... Moggi’s computational lambda calculus is a metalanguage for denotational semantics which arose from the observation that many different notions of computation have the categorical structure of a strong monad on a cartesian closed category. In this paper we show that the computational lambda calculus ..."
Abstract

Cited by 54 (6 self)
 Add to MetaCart
Moggi’s computational lambda calculus is a metalanguage for denotational semantics which arose from the observation that many different notions of computation have the categorical structure of a strong monad on a cartesian closed category. In this paper we show that the computational lambda calculus also arises naturally as the term calculus corresponding (by the CurryHoward correspondence) to a novel intuitionistic modal propositional logic. We give natural deduction, sequent calculus and Hilbertstyle presentations of this logic and prove strong normalisation and confluence results. 1
Finiteness spaces
 Mathematical Structures in Computer Science
, 1987
"... We investigate a new denotational model of linear logic based on the purely relational model. In this semantics, webs are equipped with a notion of “finitary ” subsets satisfying a closure condition and proofs are interpreted as finitary sets. In spite of a formal similarity, this model is quite dif ..."
Abstract

Cited by 53 (13 self)
 Add to MetaCart
We investigate a new denotational model of linear logic based on the purely relational model. In this semantics, webs are equipped with a notion of “finitary ” subsets satisfying a closure condition and proofs are interpreted as finitary sets. In spite of a formal similarity, this model is quite different from the usual models of linear logic (coherence semantics, hypercoherence semantics, the various existing game semantics...). In particular, the standard fixpoint operators used for defining the general recursive functions are not finitary, although the primitive recursion operators are. This model can be considered as a discrete version of the Köthe space semantics introduced in a previous paper: we show how, given a field, each finiteness space gives rise to a vector space endowed with a linear topology, a notion introduced by Lefschetz in 1942, and we study the corresponding model where morphisms are linear continuous maps (a version of Girard’s quantitative semantics with coefficients in the field). We obtain in that way a new model of the recently introduced differential lambdacalculus. Notations. If S is a set, we denote by M(S) = N S the set of all multisets over S. If µ ∈ M(S), µ denotes the support of µ which is the set of all a ∈ S such that µ(a) ̸ = 0. A multiset is finite if it has a finite support. If a1,..., an are elements of some given set S, we denote by [a1,..., an] the corresponding multiset over S. The usual operations on natural numbers are extended to multisets pointwise. If (Si)i∈I are sets, we denote by πi the ith projection πi: ∏ j∈I Sj → Si.
Geometry of Interaction and Linear Combinatory Algebras
, 2000
"... this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by S ..."
Abstract

Cited by 44 (10 self)
 Add to MetaCart
this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by Stefanescu (Stefanescu 2000).) However, the first author realized, following a stimulating discussion with Gordon Plotkin, that traced monoidal categories provided a common denominator for the axiomatics of both the Girardstyle and AbramskyJagadeesanstyle versions of the Geometry of Interaction, at the basic level of the multiplicatives. This insight was presented in (Abramsky 1996), in which Girardstyle GoI was dubbed "particlestyle", since it concerns information particles or tokens flowing around a network, while the AbramskyJagadeesan style GoI was dubbed "wavestyle", since it concerns the evolution of a global information state or "wave". Formally, this distinction is based on whether the tensor product (i.e. the symmetric monoidal structure) in the underlying category is interpreted as a coproduct (particle style) or as a product (wave style). This computational distinction between coproduct and product interpretations of the same underlying network geometry turned out to have been partially anticipated, in a rather di#erent context, in a pioneering paper by E. S. Bainbridge (Bainbridge 1976), as observed by Dusko Pavlovic. These two forms of interpretation, and ways of combining them, have also been studied recently in (Stefanescu 2000). He uses the terminology "additive" for coproductbased (i.e. our "particlestyle") and "multiplicative" for productbased (i.e. our "wavestyle"); this is not suitable for our purposes, because of the clash with Linear Logic term...
The Differential LambdaCalculus
 Theoretical Computer Science
, 2001
"... We present an extension of the lambdacalculus with differential constructions motivated by a model of linear logic discovered by the first author and presented in [Ehr01]. We state and prove some basic results (confluence, weak normalization in the typed case), and also a theorem relating the usual ..."
Abstract

Cited by 44 (9 self)
 Add to MetaCart
We present an extension of the lambdacalculus with differential constructions motivated by a model of linear logic discovered by the first author and presented in [Ehr01]. We state and prove some basic results (confluence, weak normalization in the typed case), and also a theorem relating the usual Taylor series of analysis to the linear head reduction of lambdacalculus.
Syntactic Control of Interference Revisited
, 1995
"... In "Syntactic Control of Interference" (POPL, 1978), J. C. Reynolds proposes three design principles intended to constrain the scope of imperative state effects in Algollike languages. The resulting linguistic framework seems to be a very satisfactory way of combining functional and imperative conc ..."
Abstract

Cited by 40 (6 self)
 Add to MetaCart
In "Syntactic Control of Interference" (POPL, 1978), J. C. Reynolds proposes three design principles intended to constrain the scope of imperative state effects in Algollike languages. The resulting linguistic framework seems to be a very satisfactory way of combining functional and imperative concepts, having the desirable attributes of both purely functional languages (such as pcf) and simple imperative languages (such as the language of while programs). However, Reynolds points out that the "obvious" syntax for interference control has the unfortunate property that fireductions do not always preserve typings. Reynolds has subsequently presented a solution to this problem (ICALP, 1989), but it is fairly complicated and requires intersection types in the type system. Here, we present a much simpler solution which does not require intersection types. We first describe a new type system inspired in part by linear logic and verify that reductions preserve typings. We then define a class...
Full Abstraction for Idealized Algol with Passive Expressions
, 1998
"... ion for Idealized Algol with Passive Expressions Samson Abramsky University of Edinburgh Department of Computer Science James Clerk Maxwell Building Edinburgh EH9 3JZ Scotland samson@dcs.ed.ac.uk Guy McCusker St John's College Oxford OX1 3JP, England mccusker@comlab.ox.ac.uk Abstract A fully ab ..."
Abstract

Cited by 34 (7 self)
 Add to MetaCart
ion for Idealized Algol with Passive Expressions Samson Abramsky University of Edinburgh Department of Computer Science James Clerk Maxwell Building Edinburgh EH9 3JZ Scotland samson@dcs.ed.ac.uk Guy McCusker St John's College Oxford OX1 3JP, England mccusker@comlab.ox.ac.uk Abstract A fully abstract games model of Reynolds' Idealized Algol is described. The model gives a semantic account of the distinction between active types, such as commands, which admit sideeffecting behaviour, and passive types, such as expressions, which do not. Keywords: Algollike languages, game semantics, full abstraction. 1 Introduction Our aim in this paper is to give the first syntaxindependent construction of a fully abstract model for Idealized Algol. John Reynolds proposed Idealized Algol as capturing the essence of Algol 60 [32]; it is an elegant synthesis of the features of a simple blockstructured imperative programming language with those of higherorder functional programming. As such it...
On Bunched Typing
, 2002
"... We study a typing scheme derived from a semantic situation where a single category possesses several closed structures, corresponding to dierent varieties of function type. In this scheme typing contexts are trees built from two (or more) binary combining operations, or in short, bunches. Bunched ..."
Abstract

Cited by 33 (2 self)
 Add to MetaCart
We study a typing scheme derived from a semantic situation where a single category possesses several closed structures, corresponding to dierent varieties of function type. In this scheme typing contexts are trees built from two (or more) binary combining operations, or in short, bunches. Bunched typing and its logical counterpart, bunched implications, have arisen in joint work of the author and David Pym. The present paper gives a basic account of the type system, and then focusses on concrete models that illustrate how it may be understood in terms of resource access and sharing. The most