Results 1 
4 of
4
On Bounded Set Theory
"... We consider some Bounded Set Theories (BST), which are analogues to Bounded Arithmetic. Corresponding provablyrecursive operations over sets are characterized in terms of explicit definability and PTIME or LOGSPACEcomputability. We also present some conservativity results and describe a relation ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
We consider some Bounded Set Theories (BST), which are analogues to Bounded Arithmetic. Corresponding provablyrecursive operations over sets are characterized in terms of explicit definability and PTIME or LOGSPACEcomputability. We also present some conservativity results and describe a relation between BST, possibly with AntiFoundation Axiom, and a Logic of Inductive Definitions (LID) and Finite Model Theory.
Cycling in proofs and feasibility
 Transactions of the American Mathematical Society
, 1998
"... Abstract. There is a common perception by which small numbers are considered more concrete and large numbers more abstract. A mathematical formalization of this idea was introduced by Parikh (1971) through an inconsistent theory of feasible numbers in which addition and multiplication are as usual b ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
Abstract. There is a common perception by which small numbers are considered more concrete and large numbers more abstract. A mathematical formalization of this idea was introduced by Parikh (1971) through an inconsistent theory of feasible numbers in which addition and multiplication are as usual but for which some very large number is defined to be not feasible. Parikh shows that sufficiently short proofs in this theory can only prove true statements of arithmetic. We pursue these topics in light of logical flow graphs of proofs (Buss, 1991) and show that Parikh’s lower bound for concrete consistency reflects the presence of cycles in the logical graphs of short proofs of feasibility of large numbers. We discuss two concrete constructions which show the bound to be optimal and bring out the dynamical aspect of formal proofs. For this paper the concept of feasible numbers has two roles, as an idea with its own life and as a vehicle for exploring general principles on the dynamics and geometry of proofs. Cycles can be seen as a measure of how complicated a proof can be. We prove that short proofs must have cycles. 1.
Naïve computational type theory
 Proof and SystemReliability, Proceedings of International Summer School Marktoberdorf, July 24 to August 5, 2001, volume 62 of NATO Science Series III
, 2002
"... The basic concepts of type theory are fundamental to computer science, logic and mathematics. Indeed, the language of type theory connects these regions of science. It plays a role in computing and information science akin to that of set theory in pure mathematics. There are many excellent accounts ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
The basic concepts of type theory are fundamental to computer science, logic and mathematics. Indeed, the language of type theory connects these regions of science. It plays a role in computing and information science akin to that of set theory in pure mathematics. There are many excellent accounts of the basic ideas of type theory, especially at the interface of computer science and logic — specifically, in the literature of programming languages, semantics, formal methods and automated reasoning. Most of these are very technical, dense with formulas, inference rules, and computation rules. Here we follow the example of the mathematician Paul Halmos, who in 1960 wrote a 104page book called Naïve Set Theory intended to make the subject accessible to practicing mathematicians. His book served many generations well. This article follows the spirit of Halmos ’ book and introduces type theory without recourse to precise axioms and inference rules, and with a minimum of formalism. I start by paraphrasing the preface to Halmos ’ book. The sections of this article follow his chapters closely. Every computer scientist agrees that every computer scientist must know some type theory; the disagreement begins in trying to decide how much is some. This article contains my partial answer to that question. The purpose of the article is to tell the beginning student of advanced computer science the basic type theoretic facts of life, and to do so with a minimum of philosophical discourse and logical formalism. The point throughout is that of a prospective computer scientist eager to study programming languages, or database systems, or computational complexity theory, or distributed systems or information discovery. In type theory, “naïve ” and “formal ” are contrasting words. The present treatment might best be described as informal type theory from a naïve point of view. The concepts are very general and very abstract; therefore they may
Naïve Type Theory
, 2002
"... This article follows the spirit of Halmos' book and introduces type theory without recourse to precise axioms and inference rules, and with a minimum of formalism. I start by paraphrasing the preface to Halmos' book. The sections of this article follow his chapters closely. Every computer scientist ..."
Abstract
 Add to MetaCart
This article follows the spirit of Halmos' book and introduces type theory without recourse to precise axioms and inference rules, and with a minimum of formalism. I start by paraphrasing the preface to Halmos' book. The sections of this article follow his chapters closely. Every computer scientist agrees that every computer scientist must know some type theory; the disagreement begins in trying to decide how much is some. This article contains my partial answer to that question. The purpose of the article is to tell the beginning student of advanced computer science the basic type theoretic facts of life, and to do so with a minimum of philosophical discourse and logical formalism. The point throughout is that of a prospective computer scientist eager to study programming languages, or database systems, or computational complexity theory, or distributed systems or information discovery