Results 1  10
of
168
Compact routing schemes
 in SPAA ’01: Proceedings of the thirteenth annual ACM symposium on Parallel algorithms and architectures
"... We describe several compact routing schemes for general weighted undirected networks. Our schemes are simple and easy to implement. The routing tables stored at the nodes of the network are all very small. The headers attached to the routed messages, including the name of the destination, are extrem ..."
Abstract

Cited by 196 (7 self)
 Add to MetaCart
We describe several compact routing schemes for general weighted undirected networks. Our schemes are simple and easy to implement. The routing tables stored at the nodes of the network are all very small. The headers attached to the routed messages, including the name of the destination, are extremely short. The routing decision at each node takes constant time. Yet, the stretch of these routing schemes, i.e., the worst ratio between the cost of the path on which a packet is routed and the cost of the cheapest path from source to destination, is a small constant. Our schemes achieve a nearoptimal tradeoff between the size of the routing tables used and the resulting stretch. More specifically, we obtain: 1. A routing scheme that uses only ~ O(n 1=2) bits of memory at each node of an nnode network that has stretch 3. The space is optimal, up to logarithmic factors, in the sense that
Distributed Object Location in a Dynamic Network
, 2004
"... Modern networking applications replicate data and services widely, leading to a need for locationindependent routingthe ability to route queries to objects using names independent of the objects' physical locations. Two important properties of such a routing infrastructure are routing locality a ..."
Abstract

Cited by 167 (16 self)
 Add to MetaCart
Modern networking applications replicate data and services widely, leading to a need for locationindependent routingthe ability to route queries to objects using names independent of the objects' physical locations. Two important properties of such a routing infrastructure are routing locality and rapid adaptation to arriving and departing nodes. We show how these two properties can be efficiently achieved for certain network topologies. To do this, we present a new distributed algorithm that can solve the nearestneighbor problem for these networks. We describe our solution in the context of Tapestry, an overlay network infrastructure that employs techniques proposed by Plaxton et al. [24].
Fast construction of nets in lowdimensional metrics and their applications
 SIAM Journal on Computing
, 2006
"... We present a near linear time algorithm for constructing hierarchical nets in finite metric spaces with constant doubling dimension. This datastructure is then applied to obtain improved algorithms for the following problems: approximate nearest neighbor search, wellseparated pair decomposition, s ..."
Abstract

Cited by 98 (10 self)
 Add to MetaCart
We present a near linear time algorithm for constructing hierarchical nets in finite metric spaces with constant doubling dimension. This datastructure is then applied to obtain improved algorithms for the following problems: approximate nearest neighbor search, wellseparated pair decomposition, spanner construction, compact representation scheme, doubling measure, and computation of the (approximate) Lipschitz constant of a function. In all cases, the running (preprocessing) time is near linear and the space being used is linear. 1
Reachability and Distance Queries via 2Hop Labels
, 2002
"... Reachability and distance queries in graphs are fundamental to numerous applications, ranging from geographic navigation systems to Internet routing. Some of these applications involve huge graphs and yet require fast query answering. We propose a new data structure for representing all distances in ..."
Abstract

Cited by 77 (0 self)
 Add to MetaCart
Reachability and distance queries in graphs are fundamental to numerous applications, ranging from geographic navigation systems to Internet routing. Some of these applications involve huge graphs and yet require fast query answering. We propose a new data structure for representing all distances in a graph. The data structure is distributed in the sense that it may be viewed as assigning labels to the vertices, such that a query involving vertices u and v may be answered using only the labels of u and v.
Compact and Localized Distributed Data Structures
 JOURNAL OF DISTRIBUTED COMPUTING
, 2001
"... This survey concerns the role of data structures for compactly storing and representing various types of information in a localized and distributed fashion. Traditional approaches to data representation are based on global data structures, which require access to the entire structure even if the sou ..."
Abstract

Cited by 72 (25 self)
 Add to MetaCart
This survey concerns the role of data structures for compactly storing and representing various types of information in a localized and distributed fashion. Traditional approaches to data representation are based on global data structures, which require access to the entire structure even if the sought information involves only a small and local set of entities. In contrast, localized data representation schemes are based on breaking the information into small local pieces, or labels, selected in a way that allows one to infer information regarding a small set of entities directly from their labels, without using any additional (global) information. The survey focuses on combinatorial and algorithmic techniques, and covers complexity results on various applications, including compact localized schemes for message routing in communication networks, and adjacency and distance labeling schemes.
Bypassing the embedding: Algorithms for lowdimensional metrics
 In Proceedings of the 36th ACM Symposium on the Theory of Computing (STOC
, 2004
"... The doubling dimension of a metric is the smallest k such that any ball of radius 2r can be covered using 2 k balls of radius r. This concept for abstract metrics has been proposed as a natural analog to the dimension of a Euclidean space. If we could embed metrics with low doubling dimension into l ..."
Abstract

Cited by 65 (4 self)
 Add to MetaCart
The doubling dimension of a metric is the smallest k such that any ball of radius 2r can be covered using 2 k balls of radius r. This concept for abstract metrics has been proposed as a natural analog to the dimension of a Euclidean space. If we could embed metrics with low doubling dimension into low dimensional Euclidean spaces, they would inherit several algorithmic and structural properties of the Euclidean spaces. Unfortunately however, such a restriction on dimension does not suffice to guarantee embeddibility in a normed space. In this paper we explore the option of bypassing the embedding. In particular we show the following for low dimensional metrics: • Quasipolynomial time (1+ɛ)approximation algorithm for various optimization problems such as TSP, kmedian and facility location. • (1 + ɛ)approximate distance labeling scheme with optimal label length. • (1+ɛ)stretch polylogarithmic storage routing scheme.
Compact NameIndependent Routing with Minimum Stretch
 In Proceedings of the 16th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA 2004
, 2004
"... Given a weighted undirected network with arbitrary node names, we present a compact routing scheme, using a O(√n) space routing table at each node, and routing along paths of stretch 3, that is, at most thrice as long as the shortest paths. This is optimal in a very strong sense. It is known t ..."
Abstract

Cited by 64 (12 self)
 Add to MetaCart
Given a weighted undirected network with arbitrary node names, we present a compact routing scheme, using a O(√n) space routing table at each node, and routing along paths of stretch 3, that is, at most thrice as long as the shortest paths. This is optimal in a very strong sense. It is known that no compact routing using o(n) space per node can route with stretch below 3. Also, it is known that any stretch below 5 requires Ω(√n) space per node.
Exact and Approximate Distances in Graphs  a survey
 In ESA
, 2001
"... We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems. ..."
Abstract

Cited by 57 (0 self)
 Add to MetaCart
We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems.
Compact routing on Internetlike graphs
 In Proc. IEEE INFOCOM
, 2004
"... Abstract — The ThorupZwick (TZ) compact routing scheme is the first generic stretch3 routing scheme delivering a nearly optimal pernode memory upper bound. Using both direct analysis and simulation, we derive the stretch distribution of this routing scheme on Internetlike interdomain topologies. ..."
Abstract

Cited by 54 (7 self)
 Add to MetaCart
Abstract — The ThorupZwick (TZ) compact routing scheme is the first generic stretch3 routing scheme delivering a nearly optimal pernode memory upper bound. Using both direct analysis and simulation, we derive the stretch distribution of this routing scheme on Internetlike interdomain topologies. By investigating the TZ scheme on random graphs with powerlaw node degree distributions, Pk � k −γ, we find that the average TZ stretch is quite low and virtually independent of γ. In particular, for the Internet interdomain graph with γ � 2.1, the average TZ stretch is around 1.1, with up to 70 % of all pairwise paths being stretch1 (shortest possible). As the network grows, the average stretch slowly decreases. The routing table is very small, too. It is well below its upper bounds, and its size is around 50 records for 10 4node networks. Furthermore, we find that both the average shortest path length (i.e. distance) d and width of the distance distribution σ observed in the real Internet interAS graph have values that are very close to the minimums of the average stretch in the d and σdirections. This leads us to the discovery of a unique critical point of the average TZ stretch as a function of d and σ. The Internet distance distribution is located in a close neighborhood of this point. This is remarkable given the fact that the Internet interdomain topology has evolved without any direct attention paid to properties of the stretch distribution. It suggests the average stretch function may be an indirect indicator of the optimization criteria influencing the Internet’s interdomain topology evolution.
Graph distances in the streaming model: the value of space
 In ACMSIAM Symposium on Discrete Algorithms
, 2005
"... We investigate the importance of space when solving problems based on graph distance in the streaming model. In this model, the input graph is presented as a stream of edges in an arbitrary order. The main computational restriction of the model is that we have limited space and therefore cannot stor ..."
Abstract

Cited by 52 (10 self)
 Add to MetaCart
We investigate the importance of space when solving problems based on graph distance in the streaming model. In this model, the input graph is presented as a stream of edges in an arbitrary order. The main computational restriction of the model is that we have limited space and therefore cannot store all the streamed data; we are forced to make spaceefficient summaries of the data as we go along. For a graph of n vertices and m edges, we show that testing many graph properties, including connectivity (ergo any reasonable decision problem about distances) and bipartiteness, requires Ω(n) bits of space. Given this, we then investigate how the power of the model increases as we relax our space restriction. Our main result is an efficient randomized algorithm that constructs a (2t + 1)spanner in one pass. With high probability, it uses O(t · n 1+1/t log 2 n) bits of space and processes each edge in the stream in O(t 2 · n 1/t log n) time. We find approximations to diameter and girth via the log n constructed spanner. For t = Ω (), the space log log n requirement of the algorithm is O(n·polylog n), and the peredge processing time is O(polylog n). We also show a corresponding lower bound of t for the approximation ratio achievable when the space restriction is O(t · n1+1/t log 2 n). We then consider the scenario in which we are allowed multiple passes over the input stream. Here, we investigate whether allowing these extra passes will compensate for a given space restriction. We show that ∗This work was supported by the DoD University Research Initiative (URI) administered by the Office of Naval Research