Results 1  10
of
38
Universal coalgebra: a theory of systems
, 2000
"... In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certa ..."
Abstract

Cited by 298 (31 self)
 Add to MetaCart
In the semantics of programming, nite data types such as finite lists, have traditionally been modelled by initial algebras. Later final coalgebras were used in order to deal with in finite data types. Coalgebras, which are the dual of algebras, turned out to be suited, moreover, as models for certain types of automata and more generally, for (transition and dynamical) systems. An important property of initial algebras is that they satisfy the familiar principle of induction. Such a principle was missing for coalgebras until the work of Aczel (NonWellFounded sets, CSLI Leethre Notes, Vol. 14, center for the study of Languages and information, Stanford, 1988) on a theory of nonwellfounded sets, in which he introduced a proof principle nowadays called coinduction. It was formulated in terms of bisimulation, a notion originally stemming from the world of concurrent programming languages. Using the notion of coalgebra homomorphism, the definition of bisimulation on coalgebras can be shown to be formally dual to that of congruence on algebras. Thus, the three basic notions of universal algebra: algebra, homomorphism of algebras, and congruence, turn out to correspond to coalgebra, homomorphism of coalgebras, and bisimulation, respectively. In this paper, the latter are taken
Towards a Mathematical Operational Semantics
 In Proc. 12 th LICS Conf
, 1997
"... We present a categorical theory of `wellbehaved' operational semantics which aims at complementing the established theory of domains and denotational semantics to form a coherent whole. It is shown that, if the operational rules of a programming language can be modelled as a natural transformation ..."
Abstract

Cited by 134 (9 self)
 Add to MetaCart
We present a categorical theory of `wellbehaved' operational semantics which aims at complementing the established theory of domains and denotational semantics to form a coherent whole. It is shown that, if the operational rules of a programming language can be modelled as a natural transformation of a suitable general form, depending on functorial notions of syntax and behaviour, then one gets both an operational model and a canonical, internally fully abstract denotational model for free; moreover, both models satisfy the operational rules. The theory is based on distributive laws and bialgebras; it specialises to the known classes of wellbehaved rules for structural operational semantics, such as GSOS.
Bisimulation for Probabilistic Transition Systems: A Coalgebraic Approach
, 1998
"... . The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a ..."
Abstract

Cited by 75 (15 self)
 Add to MetaCart
. The notion of bisimulation as proposed by Larsen and Skou for discrete probabilistic transition systems is shown to coincide with a coalgebraic definition in the sense of Aczel and Mendler in terms of a set functor. This coalgebraic formulation makes it possible to generalize the concepts to a continuous setting involving Borel probability measures. Under reasonable conditions, generalized probabilistic bisimilarity can be characterized categorically. Application of the final coalgebra paradigm then yields an internally fully abstract semantical domain with respect to probabilistic bisimulation. Keywords. Bisimulation, probabilistic transition system, coalgebra, ultrametric space, Borel measure, final coalgebra. 1 Introduction For discrete probabilistic transition systems the notion of probabilistic bisimilarity of Larsen and Skou [LS91] is regarded as the basic process equivalence. The definition was given for reactive systems. However, Van Glabbeek, Smolka and Steffen s...
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 45 (19 self)
 Add to MetaCart
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how
A Hierarchy of Probabilistic System Types
, 2003
"... We study various notions of probabilistic bisimulation from a coalgebraic point of view, accumulating in a hierarchy of probabilistic system types. In general, a natural transformation between two Setfunctors straightforwardly gives rise to a transformation of coalgebras for the respective functors ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
We study various notions of probabilistic bisimulation from a coalgebraic point of view, accumulating in a hierarchy of probabilistic system types. In general, a natural transformation between two Setfunctors straightforwardly gives rise to a transformation of coalgebras for the respective functors. This latter transformation preserves homomorphisms and thus bisimulations. For comparison of probabilistic system types we also need reflection of bisimulation. We build the hierarchy of probabilistic systems by exploiting the new result that the transformation also reflects bisimulation in case the natural transformation is componentwise injective and the first functor preserves weak pullbacks. Additionally, we illustrate the correspondence of concrete and coalgebraic bisimulation in the case of general Segalatype systems.
On the Foundations of Final Coalgebra Semantics: nonwellfounded sets, partial orders, metric spaces
, 1998
"... ..."
Hidden Coinduction: Behavioral Correctness Proofs for Objects
 Mathematical Structures in Computer Science
, 1999
"... This paper unveils and motivates an ambitious programme of hidden algebraic research in software engineering, beginning with our general goals, continuing with an overview of results, and including some future plans. The main contribution is powerful hidden coinduction techniques for proving behavio ..."
Abstract

Cited by 24 (8 self)
 Add to MetaCart
This paper unveils and motivates an ambitious programme of hidden algebraic research in software engineering, beginning with our general goals, continuing with an overview of results, and including some future plans. The main contribution is powerful hidden coinduction techniques for proving behavioral correctness of concurrent systems; several mechanical proofs are given using OBJ3. We also show how modularization, bisimulation, transition systems, concurrency and combinations of the functional, constraint, logic and object paradigms fit into hidden algebra. 1. Introduction
Fold and Unfold for Program Semantics
 In Proc. 3rd ACM SIGPLAN International Conference on Functional Programming
, 1998
"... In this paper we explain how recursion operators can be used to structure and reason about program semantics within a functional language. In particular, we show how the recursion operator fold can be used to structure denotational semantics, how the dual recursion operator unfold can be used to str ..."
Abstract

Cited by 22 (4 self)
 Add to MetaCart
In this paper we explain how recursion operators can be used to structure and reason about program semantics within a functional language. In particular, we show how the recursion operator fold can be used to structure denotational semantics, how the dual recursion operator unfold can be used to structure operational semantics, and how algebraic properties of these operators can be used to reason about program semantics. The techniques are explained with the aid of two main examples, the first concerning arithmetic expressions, and the second concerning Milner's concurrent language CCS. The aim of the paper is to give functional programmers new insights into recursion operators, program semantics, and the relationships between them. 1 Introduction Many computations are naturally expressed as recursive programs defined in terms of themselves, and properties proved of such programs using some form of inductive argument. Not surprisingly, many programs will have a similar recursive stru...
Functors for Coalgebras
 Algebra Universalis
"... . Functors preserving weak pullbacks provide the basis for a rich structure theory of coalgebras. We give an easy to use criterion to check whether a functor preserves weak pullbacks. We apply the characterization to the functor F which associates a set X with the set F(X) of all filters on X. It t ..."
Abstract

Cited by 19 (5 self)
 Add to MetaCart
. Functors preserving weak pullbacks provide the basis for a rich structure theory of coalgebras. We give an easy to use criterion to check whether a functor preserves weak pullbacks. We apply the characterization to the functor F which associates a set X with the set F(X) of all filters on X. It turns out that this functor preserves weak pullbacks, yet does not preserve weak generalized pullbacks. Since topological spaces can be considered as F coalgebras, in fact they constitute a covariety, we find that the intersection of subcoalgebras need not be a coalgebra, and 1generated Fcoalgebras need not exist. 1. Introduction Coalgebras have been introduced by Aczel and Mendler [AM89] to model various types of transition systems. Reichel [Rei95], and Jacobs [Jac96] show that coalgebras are well suited for modeling object oriented programmming and for program verification. In [Rut96], J.J.M.M. Rutten develops the a fundamental theory of "universal coalgebra" along the lines of univers...
An abstract coalgebraic approach to process equivalence for wellbehaved operational semantics
, 2004
"... This thesis is part of the programme aimed at finding a mathematical theory of wellbehaved structural operational semantics. General and basic results shown in 1997 in a seminal paper by Turi and Plotkin are extended in two directions, aiming at greater expressivity of the framework. The socalled ..."
Abstract

Cited by 19 (6 self)
 Add to MetaCart
This thesis is part of the programme aimed at finding a mathematical theory of wellbehaved structural operational semantics. General and basic results shown in 1997 in a seminal paper by Turi and Plotkin are extended in two directions, aiming at greater expressivity of the framework. The socalled bialgebraic framework of Turi and Plotkin is an abstract generalization of the wellknown structural operational semantics format GSOS, and provides a theory of operational semantic rules for which bisimulation equivalence is a congruence. The first part of this thesis aims at extending that framework to cover other operational equivalences and preorders (e.g. trace equivalence), known collectively as the van Glabbeek spectrum. To do this, a novel coalgebraic approach to relations on processes is desirable, since the usual approach to coalgebraic bisimulations as spans of coalgebras does not extend easily to other known equivalences on processes. Such an approach, based on fibrations of test