Results 1 
8 of
8
Computability and recursion
 BULL. SYMBOLIC LOGIC
, 1996
"... We consider the informal concept of “computability” or “effective calculability” and two of the formalisms commonly used to define it, “(Turing) computability” and “(general) recursiveness.” We consider their origin, exact technical definition, concepts, history, general English meanings, how they b ..."
Abstract

Cited by 33 (0 self)
 Add to MetaCart
We consider the informal concept of “computability” or “effective calculability” and two of the formalisms commonly used to define it, “(Turing) computability” and “(general) recursiveness.” We consider their origin, exact technical definition, concepts, history, general English meanings, how they became fixed in their present roles, how they were first and are now used, their impact on nonspecialists, how their use will affect the future content of the subject of computability theory, and its connection to other related areas. After a careful historical and conceptual analysis of computability and recursion we make several recommendations in section §7 about preserving the intensional differences between the concepts of “computability” and “recursion.” Specifically we recommend that: the term “recursive ” should no longer carry the additional meaning of “computable” or “decidable;” functions defined using Turing machines, register machines, or their variants should be called “computable” rather than “recursive;” we should distinguish the intensional difference between Church’s Thesis and Turing’s Thesis, and use the latter particularly in dealing with mechanistic questions; the name of the subject should be “Computability Theory” or simply Computability rather than
On the definability of the double jump in the computably enumerable sets
 J. MATH. LOG
, 2002
"... We show that the double jump is definable in the computably enumerable sets. Our main result is as follows: Let C = {a: a is the Turing degree of a � 0 3 set J ≥T 0 ′ ′}. Let D ⊆ C such that D is upward closed in C. Then there is an L(A) property ϕD(A) such that F ′ ′ ∈ D iff there is an A where A ..."
Abstract

Cited by 9 (5 self)
 Add to MetaCart
We show that the double jump is definable in the computably enumerable sets. Our main result is as follows: Let C = {a: a is the Turing degree of a � 0 3 set J ≥T 0 ′ ′}. Let D ⊆ C such that D is upward closed in C. Then there is an L(A) property ϕD(A) such that F ′ ′ ∈ D iff there is an A where A ≡T F and ϕD(A). A corollary of this is that, for all n ≥ 2, the highn (lown) computably enumerable degrees are invariant in the computably enumerable sets. Our work resolves Martin’s Invariance Conjecture.
Conjectures and Questions from Gerald Sacks’s Degrees of Unsolvability
 Archive for Mathematical Logic
, 1993
"... We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years. Gerald Sacks has had a major influence on the development of logic, parti ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years. Gerald Sacks has had a major influence on the development of logic, particularly recursion theory, over the past thirty years through his research, writing and teaching. Here, I would like to concentrate on just one instance of that influence that I feel has been of special significance to the study of the degrees of unsolvability in general and on my own work in particular the conjectures and questions posed at the end of the two editions of Sacks's first book, the classic monograph Degrees of Unsolvability (Annals
The complexity of orbits of computably enumerable sets
 BULLETIN OF SYMBOLIC LOGIC
, 2008
"... The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
The goal of this paper is to announce there is a single orbit of the c.e. sets with inclusion, E, such that the question of membership in this orbit is Σ1 1complete. This result and proof have a number of nice corollaries: the Scott rank of E is ωCK 1 + 1; not all orbits are elementarily definable; there is no arithmetic description of all orbits of E; for all finite α ≥ 9, there is a properly ∆0 α orbit (from the proof).
Extending and Interpreting Post’s Programme
, 2008
"... Computability theory concerns information with a causal – typically algorithmic – structure. As such, it provides a schematic analysis of many naturally occurring situations. Emil Post was the first to focus on the close relationship between information, coded as real numbers, and its algorithmic in ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
Computability theory concerns information with a causal – typically algorithmic – structure. As such, it provides a schematic analysis of many naturally occurring situations. Emil Post was the first to focus on the close relationship between information, coded as real numbers, and its algorithmic infrastructure. Having characterised the close connection between the quantifier type of a real and the Turing jump operation, he looked for more subtle ways in which information entails a particular causal context. Specifically, he wanted to find simple relations on reals which produced richness of local computabilitytheoretic structure. To this extent, he was not just interested in causal structure as an abstraction, but in the way in which this structure emerges in natural contexts. Posts programme was the genesis of a more far reaching research project. In this article we will firstly review the history of Posts programme, and look at two interesting developments of Posts approach. The first of these developments concerns the extension of the core programme, initially restricted to the Turing structure of the computably enumerable sets of natural numbers, to the Ershov hierarchy of sets. The second looks at how new types of information coming from the recent growth of research into randomness, and the revealing of unexpected new computabilitytheoretic infrastructure. We will conclude by viewing Posts programme from a more general perspective. We will look at how algorithmic structure does not just emerge mathematically from information, but how that emergent structure can model the emergence of very basic aspects of the real world.
Definability and Automorphisms of the Computably Enumerable Sets
, 2010
"... The computably enumerable (c.e.) sets have been central to computability theory since its inception. We study the structure of the c.e. sets, which forms a lattice E under set inclusion. Jump classes, such as the low degrees, allow us to classify the c.e. sets according to their information content. ..."
Abstract
 Add to MetaCart
The computably enumerable (c.e.) sets have been central to computability theory since its inception. We study the structure of the c.e. sets, which forms a lattice E under set inclusion. Jump classes, such as the low degrees, allow us to classify the c.e. sets according to their information content. The upward closed jump classes Ln and Hn have all been shown to be definable by a latticetheoretic formula, except for L1, the nonlow degrees, which is the only jump class whose definability was unknown. We say a class of c.e. degrees is invariant if it is the set of degrees of a class of c.e. sets that is invariant under automorphisms of E. All definable classes of degrees are invariant. We show that L1 is in fact noninvariant, thus proving a 1996 conjecture of Harrington and Soare in [3] that the nonlow degrees are not definable, and completing the problem of determining the definability of each jump class. 1