Results 1  10
of
42
A Structural Approach to Reversible Computation
 Theoretical Computer Science
, 2001
"... Reversibility is a key issue in the interface between computation and physics, and of growing importance as miniaturization progresses towards its physical limits. Most foundational work on reversible computing to date has focussed on simulations of lowlevel machine models. By contrast, we develop ..."
Abstract

Cited by 19 (3 self)
 Add to MetaCart
Reversibility is a key issue in the interface between computation and physics, and of growing importance as miniaturization progresses towards its physical limits. Most foundational work on reversible computing to date has focussed on simulations of lowlevel machine models. By contrast, we develop a more structural approach. We show how highlevel functional programs can be mapped compositionally (i.e. in a syntaxdirected fashion) into a simple kind of automata which are immediately seen to be reversible. The size of the automaton is linear in the size of the functional term. In mathematical terms, we are building a concrete model of functional computation. This construction stems directly from ideas arising in Geometry of Interaction and Linear Logic—but can be understood without any knowledge of these topics. In fact, it serves as an excellent introduction to them. At the same time, an interesting logical delineation between reversible and irreversible forms of computation emerges from our analysis. 1
On traced monoidal closed categories
, 2008
"... ... focus on a simple observation that a traced monoidal category C is closed if and only if the canonical inclusion from C into Int C has a right adjoint. Thus, every traced monoidal closed category arises as a monoidal coreflexive full subcategory of a tortile monoidal category. From this, we der ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
... focus on a simple observation that a traced monoidal category C is closed if and only if the canonical inclusion from C into Int C has a right adjoint. Thus, every traced monoidal closed category arises as a monoidal coreflexive full subcategory of a tortile monoidal category. From this, we derive a series of facts for traced models of linear logic, and some for models of fixedpoint computation. To make the paper more selfcontained, we also include various background results for traced monoidal categories.
TemperleyLieb Algebra: From Knot Theory to . . .
"... Our aim in this paper is to trace some of the surprising and beautiful connections which are beginning to emerge between a number of apparently disparate topics. ..."
Abstract

Cited by 11 (2 self)
 Add to MetaCart
Our aim in this paper is to trace some of the surprising and beautiful connections which are beginning to emerge between a number of apparently disparate topics.
A Game Semantics For Generic Polymorphism
, 1971
"... Genericity is the idea that the same program can work at many dierent data types. Longo, Milstead and Soloviev proposed to capture the inability of generic programs to probe the structure of their instances by the following equational principle: if two generic programs, viewed as terms of type 8X ..."
Abstract

Cited by 9 (4 self)
 Add to MetaCart
Genericity is the idea that the same program can work at many dierent data types. Longo, Milstead and Soloviev proposed to capture the inability of generic programs to probe the structure of their instances by the following equational principle: if two generic programs, viewed as terms of type 8X:A[X ], are equal at any given instance A[T ], then they are equal at all instances. They proved that this rule is admissible in a certain extension of System F, but nding a semantically motivated model satisfying this principle remained an open problem.
Abstract physical traces
 THEORY AND APPLICATIONS OF CATEGORIES
, 2005
"... ... in the light of the results in [Abramsky and Coecke LiCS‘04]. The key fact is that the notion of a strongly compact closed category allows abstract notions of adjoint, bipartite projector and inner product to be defined, and their key properties to be proved. In this paper we improve on the defi ..."
Abstract

Cited by 8 (6 self)
 Add to MetaCart
... in the light of the results in [Abramsky and Coecke LiCS‘04]. The key fact is that the notion of a strongly compact closed category allows abstract notions of adjoint, bipartite projector and inner product to be defined, and their key properties to be proved. In this paper we improve on the definition of strong compact closure as compared to the one presented in [Abramsky and Coecke LiCS‘04]. This modification enables an elegant characterization of strong compact closure in terms of adjoints and a Yanking axiom, and a better treatment of bipartite projectors.
Stratified Bounded Affine Logic for Logarithmic Space
"... A number of complexity classes, most notably PTIME, have been characterised by subsystems of linear logic. In this paper we show that the functions computable in logarithmic space can also be characterised by a restricted version of linear logic. We introduce Stratified Bounded Affine Logic (SBAL), ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
A number of complexity classes, most notably PTIME, have been characterised by subsystems of linear logic. In this paper we show that the functions computable in logarithmic space can also be characterised by a restricted version of linear logic. We introduce Stratified Bounded Affine Logic (SBAL), a restricted version of Bounded Linear Logic, in which not only the modality! but also the universal quantifier is bounded by a resource polynomial. We show that the proofs of certain sequents in SBAL represent exactly the functions computable logarithmic space. The proof that SBALproofs can be compiled to LOGSPACE functions rests on modelling computation by interaction dialogues in the style of game semantics. We formulate the compilation of SBALproofs to spaceefficient programs as an interpretation in a realisability model, in which realisers are taken from a Geometry of Interaction situation.
Category theory for linear logicians
 Linear Logic in Computer Science
, 2004
"... This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categori ..."
Abstract

Cited by 8 (1 self)
 Add to MetaCart
This paper presents an introduction to category theory with an emphasis on those aspects relevant to the analysis of the model theory of linear logic. With this in mind, we focus on the basic definitions of category theory and categorical logic. An analysis of cartesian and cartesian closed categories and their relation to intuitionistic logic is followed by a consideration of symmetric monoidal closed, linearly distributive and ∗autonomous categories and their relation to multiplicative linear logic. We examine nonsymmetric monoidal categories, and consider them as models of noncommutative linear logic. We introduce traced monoidal categories, and discuss their relation to the geometry of interaction. The necessary aspects of the theory of monads is introduced in order to describe the categorical modelling of the exponentials. We conclude by briefly describing the notion of full completeness, a strong form of categorical completeness, which originated in the categorical model theory of linear logic. No knowledge of category theory is assumed, but we do assume knowledge of linear logic sequent calculus and the standard models of linear logic, and modest familiarity with typed lambda calculus. 0
Physics, Topology, Logic and Computation: A Rosetta Stone
, 2009
"... Category theory is a very general formalism, but there is a certain special way that physicists use categories which turns out to have close analogues in topology, logic and computation. A category has objects and morphisms, which represent things and ways to go between things. In physics, the objec ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
Category theory is a very general formalism, but there is a certain special way that physicists use categories which turns out to have close analogues in topology, logic and computation. A category has objects and morphisms, which represent things and ways to go between things. In physics, the objects are often physical systems, and the morphisms are processes turning a state of one physical system into a state of another system — perhaps
Towards a typed geometry of interaction
, 2005
"... We introduce a typed version of Girard’s Geometry of Interaction, called Multiobject GoI (MGoI) semantics. We give an MGoI interpretation for multiplicative linear logic (MLL) without units which applies to new kinds of models, including finite dimensional vector spaces. For MGoI (i) we develop a v ..."
Abstract

Cited by 4 (1 self)
 Add to MetaCart
We introduce a typed version of Girard’s Geometry of Interaction, called Multiobject GoI (MGoI) semantics. We give an MGoI interpretation for multiplicative linear logic (MLL) without units which applies to new kinds of models, including finite dimensional vector spaces. For MGoI (i) we develop a version of partial traces and trace ideals (related to previous work of Abramsky, Blute, and Panangaden); (ii) we do not require the existence of a reflexive object for our interpretation (the original GoI 1 and 2 were untyped and hence involved a bureaucracy of domain equation isomorphisms); (iii) we introduce an abstract notion of orthogonality (related to work of Hyland and Schalk) and use this to develop a version of Girard’s theory of types, datum and algorithms in our setting, (iv) we prove appropriate Soundness and Completeness Theorems for our interpretations in partially traced categories with orthogonality; (v) we end with an application to completeness of (the original) untyped GoI in a unique decomposition category.
On categorical models of classical logic and the geometry of interaction
, 2005
"... It is wellknown that weakening and contraction cause naïve categorical models of the classical sequent calculus to collapse to Boolean lattices. In previous work, summarized briefly herein, we have provided a class of models called classical categories which is sound and complete and avoids this co ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
It is wellknown that weakening and contraction cause naïve categorical models of the classical sequent calculus to collapse to Boolean lattices. In previous work, summarized briefly herein, we have provided a class of models called classical categories which is sound and complete and avoids this collapse by interpreting cutreduction by a posetenrichment. Examples of classical categories include boolean lattices and the category of sets and relations, where both conjunction and disjunction are modelled by the settheoretic product. In this article, which is selfcontained, we present an improved axiomatization of classical categories, together with a deep exploration of their structural theory. Observing that the collapse already happens in the absence of negation, we start with negationfree models called Dummett categories. Examples include, besides the classical categories above, the category of sets and relations, where both conjunction and disjunction are modelled by the disjoint union. We prove that Dummett categories are MIX, and that the partial order can be derived from homsemilattices which have a straightforward prooftheoretic definition. Moreover, we show that the GeometryofInteraction construction can be extended from multiplicative linear logic to classical logic, by applying it to obtain a classical