Results 1 
2 of
2
An asymptotic formula for the number of smooth values of a polynomial
 J. Number Theory
, 1999
"... Integers without large prime factors, dubbed smooth numbers, are by now firmly established as a useful and versatile tool in number theory. More than being simply a property of numbers that is conceptually dual to primality, smoothness has played a major role in the proofs of many results, from mult ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
Integers without large prime factors, dubbed smooth numbers, are by now firmly established as a useful and versatile tool in number theory. More than being simply a property of numbers that is conceptually dual to primality, smoothness has played a major role in the proofs of many results, from multiplicative questions to Waring’s problem to complexity
MATHEMATICS OF COMPUTATION
, 2000
"... Abstract. We define a Carmichael number of order m to be a composite integer n such that nthpower raising defines an endomorphism of every Z/nZalgebra that can be generated as a Z/nZmodule by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, an ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
Abstract. We define a Carmichael number of order m to be a composite integer n such that nthpower raising defines an endomorphism of every Z/nZalgebra that can be generated as a Z/nZmodule by m elements. We give a simple criterion to determine whether a number is a Carmichael number of order m, and we give a heuristic argument (based on an argument of Erdős for the usual Carmichael numbers) that indicates that for every m there should be infinitely many Carmichael numbers of order m. The argument suggests a method for finding examples of higherorder Carmichael numbers; we use the method to provide examples of Carmichael numbers of order 2. 1.