Results 1  10
of
48
On fusion categories
 Annals of Mathematics
"... Abstract. In this paper we extend categorically the notion of a finite nilpotent group to fusion categories. To this end, we first analyze the trivial component of the universal grading of a fusion category C, and then introduce the upper central series ofC. For fusion categories with commutative Gr ..."
Abstract

Cited by 76 (17 self)
 Add to MetaCart
Abstract. In this paper we extend categorically the notion of a finite nilpotent group to fusion categories. To this end, we first analyze the trivial component of the universal grading of a fusion category C, and then introduce the upper central series ofC. For fusion categories with commutative Grothendieck rings (e.g., braided fusion categories) we also introduce the lower central series. We study arithmetic and structural properties of nilpotent fusion categories, and apply our theory to modular categories and to semisimple Hopf algebras. In particular, we show that in the modular case the two central series are centralizers of each other in the sense of M. Müger. Dedicated to Leonid Vainerman on the occasion of his 60th birthday 1. introduction The theory of fusion categories arises in many areas of mathematics such as representation theory, quantum groups, operator algebras and topology. The representation categories of semisimple (quasi) Hopf algebras are important examples of fusion categories. Fusion categories have been studied extensively in the literature,
From subfactors to categories and topology III. Triangulation invariants of 3manifolds and Morita equivalence of tensor categories
 In preparation
"... ..."
Finite tensor categories
 Moscow Math. Journal
"... These are lecture notes for the course 18.769 “Tensor categories”, taught by P. Etingof at MIT in the spring of 2009. In these notes we will assume that the reader is familiar with the basic theory of categories and functors; a detailed discussion of this theory can be found in the book [ML]. We wil ..."
Abstract

Cited by 26 (8 self)
 Add to MetaCart
These are lecture notes for the course 18.769 “Tensor categories”, taught by P. Etingof at MIT in the spring of 2009. In these notes we will assume that the reader is familiar with the basic theory of categories and functors; a detailed discussion of this theory can be found in the book [ML]. We will also assume the basics of the theory of abelian categories (for a more detailed treatment see the book [F]). If C is a category, the notation X ∈ C will mean that X is an object of C, and the set of morphisms between X, Y ∈ C will be denoted by Hom(X, Y). Throughout the notes, for simplicity we will assume that the ground field k is algebraically closed unless otherwise specified, even though in many cases this assumption will not be needed. 1. Monoidal categories 1.1. The definition of a monoidal category. A good way of thinking
Duality and defects in rational conformal field theory
, 2006
"... We study topological defect lines in twodimensional rational conformal field theory. Continuous variation of the location of such a defect does not change the value of a correlator. Defects separating different phases of local CFTs with the same chiral symmetry are included in our discussion. We sh ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
We study topological defect lines in twodimensional rational conformal field theory. Continuous variation of the location of such a defect does not change the value of a correlator. Defects separating different phases of local CFTs with the same chiral symmetry are included in our discussion. We show how the resulting onedimensional phase boundaries can be used to extract symmetries and orderdisorder dualities of the CFT. The case of central charge c = 4/5, for which there are two inequivalent world sheet phases corresponding to the tetracritical Ising model and the critical threestates
Frobenius monads and pseudomonoids
 2CATEGORIES COMPANION 73
, 2004
"... Six equivalent definitions of Frobenius algebra in a monoidal category are provided. In a monoidal bicategory, a pseudoalgebra is Frobenius if and only i f it is star autonomous. Autonomous pseudoalgebras are also Frobenius. What i t means for a morphism of a bicategory to be a projective equivalenc ..."
Abstract

Cited by 19 (4 self)
 Add to MetaCart
Six equivalent definitions of Frobenius algebra in a monoidal category are provided. In a monoidal bicategory, a pseudoalgebra is Frobenius if and only i f it is star autonomous. Autonomous pseudoalgebras are also Frobenius. What i t means for a morphism of a bicategory to be a projective equivalence is defined; this concept is related to "strongly separable " Frobenius algebras and "weak monoidal Morita equivalence". Wreath products of Frobenius algebras are discussed.
Weakly grouptheoretical and solvable fusion categories
"... To Izrail Moiseevich Gelfand on his 95th birthday with admiration ..."
Abstract

Cited by 17 (4 self)
 Add to MetaCart
To Izrail Moiseevich Gelfand on his 95th birthday with admiration
Correspondences of ribbon categories
, 2006
"... Much of algebra and representation theory can be formulated in the general framework of tensor categories. The aim of this paper is to further develop this theory for braided tensor categories. Several results are established that do not have a substantial counterpart for symmetric tensor categories ..."
Abstract

Cited by 13 (3 self)
 Add to MetaCart
Much of algebra and representation theory can be formulated in the general framework of tensor categories. The aim of this paper is to further develop this theory for braided tensor categories. Several results are established that do not have a substantial counterpart for symmetric tensor categories. In particular, we exhibit various equivalences involving categories of modules over algebras in ribbon categories. Finally we establish a correspondence of ribbon categories that can be applied to, and is in fact motivated by, the coset construction in conformal quantum field theory.
Frobenius Algebras and ambidextrous adjunctions
, 2006
"... In this paper we explain the relationship between Frobenius objects in monoidal categories and adjunctions in 2categories. Specifically, we show that every Frobenius object in a monoidal category M arises from an ambijunction (simultaneous left and right adjoints) in some 2categoryDinto which M fu ..."
Abstract

Cited by 12 (1 self)
 Add to MetaCart
In this paper we explain the relationship between Frobenius objects in monoidal categories and adjunctions in 2categories. Specifically, we show that every Frobenius object in a monoidal category M arises from an ambijunction (simultaneous left and right adjoints) in some 2categoryDinto which M fully and faithfully embeds. Since a 2D topological quantum field theory is equivalent to a commutative Frobenius algebra, this result also shows that every 2D TQFT is obtained from an ambijunction in some 2category. Our theorem is proved by extending the theory of adjoint monads to the context of an arbitrary 2category and utilizing the free completion under EilenbergMoore objects. We then categorify this theorem by replacing the monoidal category M with a semistrict monoidal 2category M, and replacing the 2categoryD into which it embeds by a semistrict 3category. To state this more powerful result, we must first define the notion of a ‘Frobenius pseudomonoid’, which categorifies that of a Frobenius object. We then define the notion of a ‘pseudo ambijunction’, categorifying that of an ambijunction. In each case, the idea is that all the usual axioms now hold only up to coherent isomorphism. Finally, we show that every Frobenius pseudomonoid in a semistrict monoidal 2category arises from a pseudo ambijunction in some semistrict 3category.
On Galois extensions of braided tensor categories, mapping class group representations and simple current extensions
 In preparation
"... We show that the author’s notion of Galois extensions of braided tensor categories [22], see also [3], gives rise to braided crossed Gcategories, recently introduced for the purposes of 3manifold topology [31]. The Galois extensions C ⋊ S are studied in detail, and we determine for which g ∈ G non ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
We show that the author’s notion of Galois extensions of braided tensor categories [22], see also [3], gives rise to braided crossed Gcategories, recently introduced for the purposes of 3manifold topology [31]. The Galois extensions C ⋊ S are studied in detail, and we determine for which g ∈ G nontrivial objects of grade g exist in C ⋊ S. 1