Results 1  10
of
256
Level set methods: An overview and some recent results
 J. Comput. Phys
, 2001
"... The level set method was devised by Osher and Sethian in [64] as a simple and versatile method for computing and analyzing the motion of an interface Γ in two or three dimensions. Γ bounds a (possibly multiply connected) region Ω. The goal is to compute and analyze the subsequent motion of Γ under a ..."
Abstract

Cited by 228 (11 self)
 Add to MetaCart
(Show Context)
The level set method was devised by Osher and Sethian in [64] as a simple and versatile method for computing and analyzing the motion of an interface Γ in two or three dimensions. Γ bounds a (possibly multiply connected) region Ω. The goal is to compute and analyze the subsequent motion of Γ under a velocity field �v. This velocity can depend on position, time, the geometry of the interface and the external physics. The interface is captured for later time as the zero level set of a smooth (at least Lipschitz continuous) function ϕ(�x,t), i.e., Γ(t)={�xϕ(�x,t)=0}. ϕ is positive inside Ω, negative outside Ω andiszeroonΓ(t). Topological merging and breaking are well defined and easily performed. In this review article we discuss recent variants and extensions, including the motion of curves in three dimensions, the Dynamic Surface Extension method, fast methods for steady state problems, diffusion generated motion and the variational level set approach. We also give a user’s guide to the level set dictionary and technology, couple the method to a wide variety of problems involving external physics, such as compressible and incompressible (possibly reacting) flow, Stefan problems, kinetic crystal growth, epitaxial growth of thin films,
A Hybrid Particle Level Set Method for Improved Interface Capturing
 J. Comput. Phys
, 2002
"... In this paper, we propose a new numerical method for improving the mass conservation properties of the level set method when the interface is passively advected in a flow field. Our method uses Lagrangian marker particles to rebuild the level set in regions which are underresolved. This is ofte ..."
Abstract

Cited by 215 (25 self)
 Add to MetaCart
(Show Context)
In this paper, we propose a new numerical method for improving the mass conservation properties of the level set method when the interface is passively advected in a flow field. Our method uses Lagrangian marker particles to rebuild the level set in regions which are underresolved. This is often the case for flows undergoing stretching and tearing. The overall method maintains a smooth geometrical description of the interface and the implementation simplicity characteristic of the level set method. Our method compares favorably with volume of fluid methods in the conservation of mass and purely Lagrangian schemes for interface resolution. The method is presented in three spatial dimensions.
Level set evolution without reinitialization: A new variational formulation
 in Proc. of IEEE Conference on Computer Vision and Pattern Recognition
, 2005
"... In this paper, we present a new variational formulation for geometric active contours that forces the level set function to be close to a signed distance function, and therefore completely eliminates the need of the costly reinitialization procedure. Our variational formulation consists of an inter ..."
Abstract

Cited by 160 (5 self)
 Add to MetaCart
(Show Context)
In this paper, we present a new variational formulation for geometric active contours that forces the level set function to be close to a signed distance function, and therefore completely eliminates the need of the costly reinitialization procedure. Our variational formulation consists of an internal energy term that penalizes the deviation of the level set function from a signed distance function, and an external energy term that drives the motion of the zero level set toward the desired image features, such as object boundaries. The resulting evolution of the level set function is the gradient flow that minimizes the overall energy functional. The proposed variational level set formulation has three main advantages over the traditional level set formulations. First, a significantly larger time step can be used for numerically solving the evolution partial differential equation, and therefore speeds up the curve evolution. Second, the level set function can be initialized with general functions that are more efficient to construct and easier to use in practice than the widely used signed distance function. Third, the level set evolution in our formulation can be easily implemented by simple finite difference scheme and is computationally more efficient. The proposed algorithm has been applied to both simulated and real images with promising results. 1.
Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Examples in Image Processing and Pattern Formation
, 2000
"... this paper. The key ..."
Level set surface editing operators
 SIGGRAPH
, 2002
"... Figure 1: Surfaces edited with level set operators. Left: A damaged Greek bust model is repaired with a new nose, chin and sharpened hair. Right: A new model is constructed from models of a griffin and dragon (small figures), producing a twoheaded, winged dragon. We present a level set framework fo ..."
Abstract

Cited by 102 (10 self)
 Add to MetaCart
Figure 1: Surfaces edited with level set operators. Left: A damaged Greek bust model is repaired with a new nose, chin and sharpened hair. Right: A new model is constructed from models of a griffin and dragon (small figures), producing a twoheaded, winged dragon. We present a level set framework for implementing editing operators for surfaces. Level set models are deformable implicit surfaces where the deformation of the surface is controlled by a speed function in the level set partial differential equation. In this paper we define a collection of speed functions that produce a set of surface editing operators. The speed functions describe the velocity at each point on the evolving surface in the direction of the surface normal. All of the information needed to deform a surface is encapsulated in the speed function, providing a simple, unified computational framework. The user combines predefined building blocks to create the desired speed function. The surface editing operators are quickly computed and may be applied both regionally and globally. The level set framework offers several advantages. 1) By construction, selfintersection cannot occur, which guarantees the generation of physicallyrealizable, simple, closed surfaces. 2) Level set models easily change topological genus, and 3) are free of the edge connectivity and mesh quality problems associated with mesh models. We present five examples of surface editing operators: blending, smoothing, sharpening, openings/closings and embossing. We demonstrate their effectiveness on several scanned objects and scanconverted models.
Approximations of shape metrics and application to shape warping and empirical shape statistics
 FOUNDATIONS OF COMPUTATIONAL MATHEMATICS
, 2004
"... This paper proposes a framework for dealing with several problems related to the analysis of shapes. Two related such problems are the definition of the relevant set of shapes and that of defining a metric on it. Following a recent research monograph by Delfour and Zolésio [11], we consider the cha ..."
Abstract

Cited by 91 (19 self)
 Add to MetaCart
(Show Context)
This paper proposes a framework for dealing with several problems related to the analysis of shapes. Two related such problems are the definition of the relevant set of shapes and that of defining a metric on it. Following a recent research monograph by Delfour and Zolésio [11], we consider the characteristic functions of the subsets of R 2 and their distance functions. The L² norm of the difference of characteristic functions, the L∞ and the W 1,2 norms of the difference of distance functions define interesting topologies, in particular the wellknown Hausdorff distance. Because of practical considerations arising from the fact that we deal with
A Fast and Accurate SemiLagrangian Particle Level Set Method
 COMPUTERS AND STRUCTURES
, 2004
"... In this paper, we present an efficient semiLagrangian based particle level set method for the accurate capturing of interfaces. This method retains the robust topological properties of the level set method without the adverse effects of numerical dissipation. Both the level set method and the p ..."
Abstract

Cited by 83 (11 self)
 Add to MetaCart
(Show Context)
In this paper, we present an efficient semiLagrangian based particle level set method for the accurate capturing of interfaces. This method retains the robust topological properties of the level set method without the adverse effects of numerical dissipation. Both the level set method and the particle level set method typically use high order accurate numerical discretizations in time and space, e.g. TVD RungeKutta and HJWENO schemes. We demonstrate that these computationally expensive schemes are not required. Instead, fast, low order accurate numerical schemes suffice. That is, the addition of particles to the level set method not only removes the difficulties associated with numerical diffusion, but also alleviates the need for computationally expensive high order accurate schemes. We use an efficient, first order accurate semiLagrangian advection scheme coupled with a first order accurate fast marching method to evolve the level set function. To accurately track the underlying flow characteristics, the particles are evolved with a second order accurate method. Since we avoid complex high order accurate numerical methods, extending the algorithm to arbitrary data structures becomes more feasible, and we show preliminary results obtained with an octreebased adaptive mesh.
3D distance fields: A survey of techniques and applications
 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS
, 2006
"... A distance field is a representation where, at each point within the field, we know the distance from that point to the closest point on any object within the domain. In addition to distance, other properties may be derived from the distance field, such as the direction to the surface, and when the ..."
Abstract

Cited by 74 (3 self)
 Add to MetaCart
(Show Context)
A distance field is a representation where, at each point within the field, we know the distance from that point to the closest point on any object within the domain. In addition to distance, other properties may be derived from the distance field, such as the direction to the surface, and when the distance field is signed, we may also determine if the point is internal or external to objects within the domain. The distance field has been found to be a useful construction within the areas of computer vision, physics, and computer graphics. This paper serves as an exposition of methods for the production of distance fields, and a review of alternative representations and applications of distance fields. In the course of this paper, we present various methods from all three of the above areas, and we answer pertinent questions such as How accurate are these methods compared to each other? How simple are they to implement?, and What is the complexity and runtime of such methods?
Level Set Methods
 in Imaging, Vision and Graphics
, 2000
"... The level set method was devised by Osher and Sethian in [56] as a simple and versatile method for computing and analyzing the motion of an interface in two or three dimensions. bounds a (possibly multiply connected) region The goal is to compute and analyze the subsequent motion of under a velocity ..."
Abstract

Cited by 74 (7 self)
 Add to MetaCart
(Show Context)
The level set method was devised by Osher and Sethian in [56] as a simple and versatile method for computing and analyzing the motion of an interface in two or three dimensions. bounds a (possibly multiply connected) region The goal is to compute and analyze the subsequent motion of under a velocity field ~v. This velocity can depend on position, time, the geometry of the interface and the external physics. The interface is captured for later time as the zero level set of a smooth (at least Lipschitz continuous) function '(~x; t), i.e., (t) = f~xj'(~x; t) = 0g. ' is positive inside negative outside and is zero on (t). Topological merging and breaking are well defined and easily performed. In this review article we discuss recent variants and extensions, including the motion of curves in three dimensions, the Dynamic Surface Extension method, fast methods for steady state problems, diffusion generated motion and the variational level set approach. We also give a user's gui...
Distance Regularized Level Set Evolution and Its Application to Image Segmentation
 IEEE TRANSACTIONS ON IMAGE PROCESSING
, 2010
"... Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, ..."
Abstract

Cited by 74 (1 self)
 Add to MetaCart
Level set methods have been widely used in image processing and computer vision. In conventional level set formulations, the level set function typically develops irregularities during its evolution, which may cause numerical errors and eventually destroy the stability of the evolution. Therefore, a numerical remedy, called reinitialization, is typically applied to periodically replace the degraded level set function with a signed distance function. However, the practice of reinitialization not only raises serious problems as when and how it should be performed, but also affects numerical accuracy in an undesirable way. This paper proposes a new variational level set formulation in which the regularity of the level set function is intrinsically maintained during the level set evolution. The level set evolution is derived as the gradient flow that minimizes an energy functional with a distance regularization term and an external energy that drives the motion of the zero