Results 1  10
of
101
Local action and abstract separation logic
 IN PROC. 22ND ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS’07
, 2007
"... Separation logic is an extension of Hoare’s logic which supports a local way of reasoning about programs that mutate memory. We present a study of the semantic structures lying behind the logic. The core idea is of a local action, a state transformer that mutates the state in a local way. We formula ..."
Abstract

Cited by 75 (10 self)
 Add to MetaCart
Separation logic is an extension of Hoare’s logic which supports a local way of reasoning about programs that mutate memory. We present a study of the semantic structures lying behind the logic. The core idea is of a local action, a state transformer that mutates the state in a local way. We formulate local actions for a general class of models called separation algebras, abstracting from the RAM and other specific concrete models used in work on separation logic. Local actions provide a semantics for a generalized form of (sequential) separation logic. We also show that our conditions on local actions allow a general soundness proof for a separation logic for concurrency, interpreted over arbitrary separation algebras.
Applicative programming with effects
 Journal of Functional Programming
"... In this paper, we introduce Applicative functors—an abstract characterisation of an applicative style of effectful programming, weaker than Monads and hence more widespread. Indeed, it is the ubiquity of this programming pattern that drew us to the abstraction. We retrace our steps in this paper, in ..."
Abstract

Cited by 71 (4 self)
 Add to MetaCart
In this paper, we introduce Applicative functors—an abstract characterisation of an applicative style of effectful programming, weaker than Monads and hence more widespread. Indeed, it is the ubiquity of this programming pattern that drew us to the abstraction. We retrace our steps in this paper, introducing the applicative pattern by diverse examples, then abstracting it to define the Applicative type class and introducing a bracket notation which interprets the normal application syntax in the idiom of an Applicative functor. Further, we develop the properties of applicative functors and the generic operations they support. We close by identifying the categorical structure of applicative functors and examining their relationship both with Monads and with Arrows. 1
Models of Sharing Graphs: A Categorical Semantics of let and letrec
, 1997
"... To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sha ..."
Abstract

Cited by 60 (9 self)
 Add to MetaCart
To my parents A general abstract theory for computation involving shared resources is presented. We develop the models of sharing graphs, also known as term graphs, in terms of both syntax and semantics. According to the complexity of the permitted form of sharing, we consider four situations of sharing graphs. The simplest is firstorder acyclic sharing graphs represented by letsyntax, and others are extensions with higherorder constructs (lambda calculi) and/or cyclic sharing (recursive letrec binding). For each of four settings, we provide the equational theory for representing the sharing graphs, and identify the class of categorical models which are shown to be sound and complete for the theory. The emphasis is put on the algebraic nature of sharing graphs, which leads us to the semantic account of them. We describe the models in terms of the notions of symmetric monoidal categories and functors, additionally with symmetric monoidal adjunctions and traced
Game Theoretic Analysis Of CallByValue Computation
, 1997
"... . We present a general semantic universe of callbyvalue computation based on elements of game semantics, and validate its appropriateness as a semantic universe by the full abstraction result for callbyvalue PCF, a generic typed programming language with callbyvalue evaluation. The key idea is ..."
Abstract

Cited by 59 (20 self)
 Add to MetaCart
. We present a general semantic universe of callbyvalue computation based on elements of game semantics, and validate its appropriateness as a semantic universe by the full abstraction result for callbyvalue PCF, a generic typed programming language with callbyvalue evaluation. The key idea is to consider the distinction between callbyname and callbyvalue as that of the structure of information flow, which determines the basic form of games. In this way the callbyname computation and callbyvalue computation arise as two independent instances of sequential functional computation with distinct algebraic structures. We elucidate the type structures of the universe following the standard categorical framework developed in the context of domain theory. Mutual relationship between the presented category of games and the corresponding callbyname universe is also clarified. 1. Introduction The callbyvalue is a mode of calling procedures widely used in imperative and function...
A new notation for arrows
 In International Conference on Functional Programming (ICFP ’01
, 2001
"... The categorical notion of monad, used by Moggi to structure denotational descriptions, has proved to be a powerful tool for structuring combinator libraries. Moreover, the monadic programming style provides a convenient syntax for many kinds of computation, so that each library defines a new sublang ..."
Abstract

Cited by 50 (1 self)
 Add to MetaCart
The categorical notion of monad, used by Moggi to structure denotational descriptions, has proved to be a powerful tool for structuring combinator libraries. Moreover, the monadic programming style provides a convenient syntax for many kinds of computation, so that each library defines a new sublanguage. Recently, several workers have proposed a generalization of monads, called variously “arrows ” or Freydcategories. The extra generality promises to increase the power, expressiveness and efficiency of the embedded approach, but does not mesh as well with the native abstraction and application. Definitions are typically given in a pointfree style, which is useful for proving general properties, but can be awkward for programming specific instances. In this paper we define a simple extension to the functional language Haskell that makes these new notions of computation more convenient to use. Our language is similar to the monadic style, and has similar reasoning properties. Moreover, it is extensible, in the sense that new combining forms can be defined as expressions in the host language. 1.
An Algebraic Presentation of Term Graphs, via GSMonoidal Categories
 Applied Categorical Structures
, 1999
"... . We present a categorical characterisation of term graphs (i.e., finite, directed acyclic graphs labeled over a signature) that parallels the wellknown characterisation of terms as arrows of the algebraic theory of a given signature (i.e., the free Cartesian category generated by it). In particula ..."
Abstract

Cited by 38 (25 self)
 Add to MetaCart
. We present a categorical characterisation of term graphs (i.e., finite, directed acyclic graphs labeled over a signature) that parallels the wellknown characterisation of terms as arrows of the algebraic theory of a given signature (i.e., the free Cartesian category generated by it). In particular, we show that term graphs over a signature \Sigma are onetoone with the arrows of the free gsmonoidal category generated by \Sigma. Such a category satisfies all the axioms for Cartesian categories but for the naturality of two transformations (the discharger ! and the duplicator r), providing in this way an abstract and clear relationship between terms and term graphs. In particular, the absence of the naturality of r and ! has a precise interpretation in terms of explicit sharing and of loss of implicit garbage collection, respectively. Keywords: algebraic theories, directed acyclic graphs, gsmonoidal categories, symmetric monoidal categories, term graphs. Mathematical Subject Clas...
Parameterised notions of computation
 In MSFP 2006: Workshop on mathematically structured functional programming, ed. Conor McBride and Tarmo Uustalu. Electronic Workshops in Computing, British Computer Society
, 2006
"... Moggi’s Computational Monads and Power et al’s equivalent notion of Freyd category have captured a large range of computational effects present in programming languages such as exceptions, sideeffects, input/output and continuations. We present generalisations of both constructs, which we call para ..."
Abstract

Cited by 38 (3 self)
 Add to MetaCart
Moggi’s Computational Monads and Power et al’s equivalent notion of Freyd category have captured a large range of computational effects present in programming languages such as exceptions, sideeffects, input/output and continuations. We present generalisations of both constructs, which we call parameterised monads and parameterised Freyd categories, that also capture computational effects with parameters. Examples of such are composable continuations, sideeffects where the type of the state varies and input/output where the range of inputs and outputs varies. By also considering monoidal parameterisation, we extend the range of effects to cover separated sideeffects and multiple independent streams of I/O. We also present two typed λcalculi that soundly and completely model our categorical definitions — with and without monoidal parameterisation — and act as prototypical languages with parameterised effects.
A Semantic analysis of control
, 1998
"... This thesis examines the use of denotational semantics to reason about control flow in sequential, basically functional languages. It extends recent work in game semantics, in which programs are interpreted as strategies for computation by interaction with an environment. Abramsky has suggested that ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
This thesis examines the use of denotational semantics to reason about control flow in sequential, basically functional languages. It extends recent work in game semantics, in which programs are interpreted as strategies for computation by interaction with an environment. Abramsky has suggested that an intensional hierarchy of computational features such as state, and their fully abstract models, can be captured as violations of the constraints on strategies in the basic functional model. Nonlocal control flow is shown to fit into this framework as the violation of strong and weak ‘bracketing ’ conditions, related to linear behaviour. The language µPCF (Parigot’s λµ with constants and recursion) is adopted as a simple basis for highertype, sequential computation with access to the flow of control. A simple operational semantics for both callbyname and callbyvalue evaluation is described. It is shown that dropping the bracketing condition on games models of PCF yields fully abstract models of µPCF.
Variations on Algebra: monadicity and generalisations of equational theories
 Formal Aspects of Computing
, 2001
"... this paper the author was partially supported by an SERC/EPSRC Advanced Research Fellowship, EPSRC Research grant GR/L54639, and EU Working Group APPSEM ..."
Abstract

Cited by 25 (0 self)
 Add to MetaCart
this paper the author was partially supported by an SERC/EPSRC Advanced Research Fellowship, EPSRC Research grant GR/L54639, and EU Working Group APPSEM