Results 11  20
of
2,087
The Benefits of Relaxing Punctuality
, 1996
"... The most natural, compositional, way of modeling realtime systems uses a dense domain for time. The satis ability of timing constraints that are capable of expressing punctuality in this model, however, is known to be undecidable. We introduce a temporal language that can constrain the time differe ..."
Abstract

Cited by 205 (18 self)
 Add to MetaCart
The most natural, compositional, way of modeling realtime systems uses a dense domain for time. The satis ability of timing constraints that are capable of expressing punctuality in this model, however, is known to be undecidable. We introduce a temporal language that can constrain the time difference between events only with finite, yet arbitrary, precision and show the resulting logic to be EXPSPACEcomplete. This result allows us to develop an algorithm for the verification of timing properties of realtime systems with a dense semantics.
WellStructured Transition Systems Everywhere!
 THEORETICAL COMPUTER SCIENCE
, 1998
"... Wellstructured transition systems (WSTS's) are a general class of infinite state systems for which decidability results rely on the existence of a wellquasiordering between states that is compatible with the transitions. In this article, we provide an extensive treatment of the WSTS idea and ..."
Abstract

Cited by 194 (9 self)
 Add to MetaCart
Wellstructured transition systems (WSTS's) are a general class of infinite state systems for which decidability results rely on the existence of a wellquasiordering between states that is compatible with the transitions. In this article, we provide an extensive treatment of the WSTS idea and show several new results. Our improved definitions allow many examples of classical systems to be seen as instances of WSTS's.
On the Synthesis of Discrete Controllers for Timed Systems
 in E.W. Mayr and C. Puech (Eds), Proc. STACS'95, LNCS 900
, 1995
"... Abstract. This paper presents algorithms for the automatic synthesis of realtime controllers by nding a winning strategy for certain games de ned by the timedautomata of Alur and Dill. In such games, the outcome depends on the players ' actions as well as on their timing. We believe that thes ..."
Abstract

Cited by 189 (20 self)
 Add to MetaCart
Abstract. This paper presents algorithms for the automatic synthesis of realtime controllers by nding a winning strategy for certain games de ned by the timedautomata of Alur and Dill. In such games, the outcome depends on the players ' actions as well as on their timing. We believe that these results will pave theway for the application of program synthesis techniques to the construction of realtime embedded systems from their speci cations. 1
Languages, Automata, and Logic
 Handbook of Formal Languages
, 1996
"... This paper is a survey on logical aspects of finite automata. Central points are the connection between finite automata and monadic secondorder logic, the EhrenfeuchtFraiss'e technique in the context of formal language theory, finite automata on !words and their determinization, and a selfc ..."
Abstract

Cited by 185 (4 self)
 Add to MetaCart
This paper is a survey on logical aspects of finite automata. Central points are the connection between finite automata and monadic secondorder logic, the EhrenfeuchtFraiss'e technique in the context of formal language theory, finite automata on !words and their determinization, and a selfcontained proof of the "Rabin Tree Theorem". Sections 5 and 6 contain material presented in a lecture series to the "Final Winter School of AMICS" (Palermo, February 1996). A modified version of the paper will be a chapter of the "Handbook of Formal Language Theory", edited by G. Rozenberg and A. Salomaa, to appear in SpringerVerlag. Keywords: Finite automata, monadic secondorder logic, firstorder logic, regular languages, starfree languages, tree automata, EhrenfeuchtFraiss'e game, !automata, temporal logic, Buchi automata, Rabin tree automata, determinacy, decidable theories. Contents 1 Introduction 1 2 Models and Formulas 2 2.1 Words, Trees, and Graphs as Models . . . . . . . . . . ....
Computing Simulations on Finite and Infinite Graphs
, 1996
"... . We present algorithms for computing similarity relations of labeled graphs. Similarity relations have applications for the refinement and verification of reactive systems. For finite graphs, we present an O(mn) algorithm for computing the similarity relation of a graph with n vertices and m edges ..."
Abstract

Cited by 149 (6 self)
 Add to MetaCart
. We present algorithms for computing similarity relations of labeled graphs. Similarity relations have applications for the refinement and verification of reactive systems. For finite graphs, we present an O(mn) algorithm for computing the similarity relation of a graph with n vertices and m edges (assuming m n). For effectively presented infinite graphs, we present a symbolic similaritychecking procedure that terminates if a finite similarity relation exists. We show that 2D rectangular automata, which model discrete reactive systems with continuous environments, define effectively presented infinite graphs with finite similarity relations. It follows that the refinement problem and the 8CTL modelchecking problem are decidable for 2D rectangular automata. 1 Introduction A labeled graph G = (V; E;A; hh\Deltaii) consist of a (possibly infinite) set V of vertices, a set E ` V 2 of edges, a set A of labels, and a function hh\Deltaii : V ! A that maps each vertex v to a label hh...
A user guide to HYTECH
, 1995
"... HyTech is a tool for the automated analysis of embedded systems. This document, designed for the rsttime user of HyTech, guides the reader through the underlying system model, and through the input language for describing and analyzing systems. The guide gives installation instructions, several exa ..."
Abstract

Cited by 144 (3 self)
 Add to MetaCart
HyTech is a tool for the automated analysis of embedded systems. This document, designed for the rsttime user of HyTech, guides the reader through the underlying system model, and through the input language for describing and analyzing systems. The guide gives installation instructions, several examples of usage, some hints for gaining maximal computational e ciency from the tool, and the complete grammar for the input language. This guide describes version 1.04 of HyTech. The latest update occurred in October 1996 1. HyTech is available through the WorldWide Web at
Modelchecking algorithms for continuoustime Markov chains
 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
, 2003
"... Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realt ..."
Abstract

Cited by 139 (25 self)
 Add to MetaCart
Continuoustime Markov chains (CTMCs) have been widely used to determine system performance and dependability characteristics. Their analysis most often concerns the computation of steadystate and transientstate probabilities. This paper introduces a branching temporal logic for expressing realtime probabilistic properties on CTMCs and presents approximate model checking algorithms for this logic. The logic, an extension of the continuous stochastic logic CSL of Aziz et al., contains a timebounded until operator to express probabilistic timing properties over paths as well as an operator to express steadystate probabilities. We show that the model checking problem for this logic reduces to a system of linear equations (for unbounded until and the steadystate operator) and a Volterra integral equation system (for timebounded until). We then show that the problem of modelchecking timebounded until properties can be reduced to the problem of computing transient state probabilities for CTMCs. This allows the verification of probabilistic timing properties by efficient techniques for transient analysis for CTMCs such as uniformization. Finally, we show that a variant of lumping equivalence (bisimulation), a wellknown notion for aggregating CTMCs, preserves the validity of all formulas in the logic.