Results 1 
6 of
6
HOPF MONOIDS FROM CLASS FUNCTIONS ON UNITRIANGULAR MATRICES
"... Abstract. We build, from the collection of all groups of unitriangular matrices, Hopf monoids in Joyal’s category of species. Such structure is carried by the collection of class function spaces on those groups, and also by the collection of superclass function spaces, in the sense of Diaconis and I ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
Abstract. We build, from the collection of all groups of unitriangular matrices, Hopf monoids in Joyal’s category of species. Such structure is carried by the collection of class function spaces on those groups, and also by the collection of superclass function spaces, in the sense of Diaconis and Isaacs. Superclasses of unitriangular matrices admit a simple description from which we deduce a combinatorial model for the Hopf monoid of superclass functions, in terms of the Hadamard product of the Hopf monoids of linear orders and of set partitions. This implies a recent result relating the Hopf algebra of superclass functions on unitriangular matrices to symmetric functions in noncommuting variables. We determine the algebraic structure of the Hopf monoid: it is a free monoid in species, with the canonical Hopf structure. As an application, we derive certain estimates on the number of conjugacy classes of unitriangular matrices.
ON THE HADAMARD PRODUCT OF HOPF MONOIDS
"... Dedicated to the memory of JeanLouis Loday Abstract. Combinatorial structures which compose and decompose give rise to Hopf monoids in Joyal’s category of species. The Hadamard product of two Hopf monoids is another Hopf monoid. We prove two main results regarding freeness of Hadamard products. The ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
(Show Context)
Dedicated to the memory of JeanLouis Loday Abstract. Combinatorial structures which compose and decompose give rise to Hopf monoids in Joyal’s category of species. The Hadamard product of two Hopf monoids is another Hopf monoid. We prove two main results regarding freeness of Hadamard products. The first one states that if one factor is connected and the other is free as a monoid, their Hadamard product is free (and connected). The second provides an explicit basis for the Hadamard product when both factors are free. The first main result is obtained by showing the existence of a oneparameter deformation of the comonoid structure and appealing to a rigidity result of Loday and Ronco which applies when the parameter is set to zero. To obtain the second result, we introduce an operation on species which is intertwined by the free monoid functor with the Hadamard product. As an application of the first result, we deduce that the dimension sequence of a connected Hopf monoid satisfies the following condition: except for the first, all coefficients of the reciprocal of its generating function are nonpositive.
HOPF MONOIDS IN THE CATEGORY OF SPECIES
"... Abstract. A Hopf monoid (in Joyal’s category of species) is an algebraic structure akin to that of a Hopf algebra. We provide a selfcontained introduction to the theory of Hopf monoids in the category of species. Combinatorial structures which compose and decompose give rise to Hopf monoids. We stu ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
(Show Context)
Abstract. A Hopf monoid (in Joyal’s category of species) is an algebraic structure akin to that of a Hopf algebra. We provide a selfcontained introduction to the theory of Hopf monoids in the category of species. Combinatorial structures which compose and decompose give rise to Hopf monoids. We study several examples of this nature. We emphasize the central role played in the theory by the Tits algebra of set compositions. Its product is tightly knit with the Hopf monoid axioms, and its elements constitute universal operations on connected Hopf monoids. We study analogues of the classical Eulerian and Dynkin idempotents and discuss the PoincaréBirkhoffWitt and CartierMilnorMoore theorems for Hopf monoids.
ON THE HADAMARD PRODUCT OF HOPF MONOIDS MARCELO AGUIAR
"... Abstract. Combinatorial structures which compose and decompose give rise to Hopf monoids in Joyal’s category of species. The Hadamard product of two Hopf monoids is another Hopf monoid. We prove two main results regarding freeness of Hadamard products. The first one states that if one factor is conn ..."
Abstract
 Add to MetaCart
Abstract. Combinatorial structures which compose and decompose give rise to Hopf monoids in Joyal’s category of species. The Hadamard product of two Hopf monoids is another Hopf monoid. We prove two main results regarding freeness of Hadamard products. The first one states that if one factor is connected and the other is free as a monoid, their Hadamard product is free (and connected). The second provides an explicit basis for the Hadamard product when both factors are free. The first main result is obtained by showing the existence of a oneparameter deformation of the comonoid structure and appealing to a rigidity result of Loday and Ronco which applies when the parameter is set to zero. To obtain the second result, we introduce an operation on species which is intertwined by the free monoid functor with the Hadamard product. As an application of the first result, we deduce that the Boolean transform of the dimension sequence of a connected Hopf monoid is nonnegative.