Results 1  10
of
210
Fitting Mixtures Of Exponentials To LongTail Distributions To Analyze Network Performance Models
, 1997
"... Traffic measurements from communication networks have shown that many quantities characterizing network performance have longtail probability distributions, i.e., with tails that decay more slowly than exponentially. File lengths, call holding times, scene lengths in MPEG video streams, and interva ..."
Abstract

Cited by 206 (14 self)
 Add to MetaCart
(Show Context)
Traffic measurements from communication networks have shown that many quantities characterizing network performance have longtail probability distributions, i.e., with tails that decay more slowly than exponentially. File lengths, call holding times, scene lengths in MPEG video streams, and intervals between connection requests in Internet traffic all have been found to have longtail distributions, being well described by distributions such as the Pareto and Weibull. It is known that longtail distributions can have a dramatic effect upon performance, e.g., longtail servicetime distributions cause longtail waitingtime distributions in queues, but it is often difficult to describe this effect in detail, because performance models with component longtail distributions tend to be difficult to analyze. We address this problem by developing an algorithm for approximating a longtail distribution by a hyperexponential distribution (a finite mixture of exponentials). We first prove tha...
Exact Simulation of Stochastic Volatility and other
 Affine Jump Diffusion Processes, Working Paper
, 2004
"... The stochastic differential equations for affine jump diffusion models do not yield exact solutions that can be directly simulated. Discretization methods can be used for simulating security prices under these models. However, discretization introduces bias into the simulation results and a large nu ..."
Abstract

Cited by 121 (1 self)
 Add to MetaCart
(Show Context)
The stochastic differential equations for affine jump diffusion models do not yield exact solutions that can be directly simulated. Discretization methods can be used for simulating security prices under these models. However, discretization introduces bias into the simulation results and a large number of time steps may be needed to reduce the discretization bias to an acceptable level. This paper suggests a method for the exact simulation of the stock price and variance under Heston’s stochastic volatility model and other affine jump diffusion processes. The sample stock price and variance from the exact distribution can then be used to generate an unbiased estimator of the price of a derivative security. We compare our method with the more conventional Euler discretization method and demonstrate the faster convergence rate of the error in our method. Specifically, our method achieves an O(s− 1 2) convergence rate, where s is the total computational budget. The convergence rate for the Euler discretization method is O(s− 1 3) or slower, depending on the model coefficients and option payoff function. Subject Classifications: Simulation, efficiency: exact methods. Finance, asset pricing: computational methods. Acknowledgement: This paper was presented at seminars at Columbia University, the sixth Monte
Inverting Sampled Traffic
 In Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement
, 2003
"... Routers have the ability to output statistics about packets and flows of packets that traverse them. Since however the generation of detailed tra#c statistics does not scale well with link speed, increasingly routers and measurement boxes implement sampling strategies at the packet level. In this pa ..."
Abstract

Cited by 104 (4 self)
 Add to MetaCart
(Show Context)
Routers have the ability to output statistics about packets and flows of packets that traverse them. Since however the generation of detailed tra#c statistics does not scale well with link speed, increasingly routers and measurement boxes implement sampling strategies at the packet level. In this paper we study both theoretically and practically what information about the original tra#c can be inferred when sampling, or `thinning', is performed at the packet level. While basic packet level characteristics such as first order statistics can be fairly directly recovered, other aspects require more attention. We focus mainly on the spectral density, a second order statistic, and the distribution of the number of packets per flow, showing how both can be exactly recovered, in theory. We then show in detail why in practice this cannot be done using the traditional packet based sampling, even for high sampling rate. We introduce an alternative flow based thinning, where practical inversion is possible even at arbitrarily low sampling rate. We also investigate the theory and practice of fitting the parameters of a Poisson cluster process, modelling the full packet tra#c, from sampled data.
Smoothness of scale functions for spectrally negative Lévy processes
, 2006
"... Scale functions play a central role in the fluctuation theory of spectrally negative Lévy processes and often appear in the context of martingale relations. These relations are often complicated to establish requiring excursion theory in favour of Itô calculus. The reason for the latter is that stan ..."
Abstract

Cited by 86 (19 self)
 Add to MetaCart
(Show Context)
Scale functions play a central role in the fluctuation theory of spectrally negative Lévy processes and often appear in the context of martingale relations. These relations are often complicated to establish requiring excursion theory in favour of Itô calculus. The reason for the latter is that standard Itô calculus is only applicable to functions with a sufficient degree of smoothness and knowledge of the precise degree of smoothness of scale functions is seemingly incomplete. The aim of this article is to offer new results concerning properties of scale functions in relation to the smoothness of the underlying Lévy measure. We place particular emphasis on spectrally negative Lévy processes with a Gaussian component and processes of bounded variation. An additional motivation is the very intimate relation of scale functions to renewal functions of subordinators. The results obtained for scale functions have direct implications offering new results concerning the smoothness of such renewal functions for which there seems to be very little existing literature on this topic.
Waitingtime tail probabilities in queues with longtail servicetime distributions
 QUEUEING SYSTEMS
, 1994
"... We consider the standard GI/G/1 queue with unlimited waiting room and the firstin firstout service discipline. We investigate the steadystate waitingtime tail probabilities P(W> x) when the servicetime distribution has a longtail distribution, i.e., when the servicetime distribution fails ..."
Abstract

Cited by 73 (23 self)
 Add to MetaCart
We consider the standard GI/G/1 queue with unlimited waiting room and the firstin firstout service discipline. We investigate the steadystate waitingtime tail probabilities P(W> x) when the servicetime distribution has a longtail distribution, i.e., when the servicetime distribution fails to have a finite moment generating function. We have developed algorithms for computing the waitingtime distribution by Laplace transform inversion when the Laplace transforms of the interarrivaltime and servicetime distributions are known. One algorithm, exploiting Pollaczek’s classical contourintegral representation of the Laplace transform, does not require that either of these transforms be rational. To facilitate such calculations, we introduce a convenient twoparameter family of longtail distributions on the positive half line with explicit Laplace transforms. This family is a Pareto mixture of exponential (PME) distributions. These PME distributions have monotone densities and Paretolike tails, i.e., are of order x − r for r> 1. We use this family of longtail distributions to investigate the quality of approximations based on asymptotics for P(W> x) as x → ∞. We show that the asymptotic approximations with these longtail servicetime distributions can be remarkably inaccurate for typical x values of interest. We also derive multiterm asymptotic expansions for the waitingtime tail probabilities in the M/G/1 queue. Even three terms of this expansion can be remarkably inaccurate for typical x values of interest. Thus, we evidently must rely on numerical algorithms for determining the waitingtime tail probabilities in this case. When working with servicetime data, we suggest using empirical Laplace transforms.
Talreja: A stochastic model for order book dynamics
, 2003
"... We propose a stochastic model for the continuoustime dynamics of a limit order book. The model strikes a balance between two desirable features: it captures key empirical properties of order book dynamics and its analytical tractability allows for fast computation of various quantities of interest ..."
Abstract

Cited by 67 (2 self)
 Add to MetaCart
We propose a stochastic model for the continuoustime dynamics of a limit order book. The model strikes a balance between two desirable features: it captures key empirical properties of order book dynamics and its analytical tractability allows for fast computation of various quantities of interest without resorting to simulation. We describe a simple parameter estimation procedure based on highfrequency observations of the order book and illustrate the results on data from the Tokyo stock exchange. Using Laplace transform methods, we are able to efficiently compute probabilities of various events, conditional on the state of the order book: an increase in the midprice, execution of an order at the bid before the ask quote moves, and execution of both a buy and a sell order at the best quotes before the price moves. Comparison with highfrequency data shows that our model can capture accurately the short term dynamics of the limit order book.
Portfolio ValueatRisk with HeavyTailed Risk Factors,” Mathematical Finance 12
, 2002
"... This paper develops efficient methods for computing portfolio valueatrisk (VAR) when the underlying risk factors have a heavytailed distribution. In modeling heavy tails, we focus on multivariate t distributions and some extensions thereof. We develop two methods for VAR calculation that exploit ..."
Abstract

Cited by 64 (2 self)
 Add to MetaCart
(Show Context)
This paper develops efficient methods for computing portfolio valueatrisk (VAR) when the underlying risk factors have a heavytailed distribution. In modeling heavy tails, we focus on multivariate t distributions and some extensions thereof. We develop two methods for VAR calculation that exploit a quadratic approximation to the portfolio loss, such as the deltagamma approximation. In the first method, we derive the characteristic function of the quadratic approximation and then use numerical transform inversion to approximate the portfolio loss distribution. Because the quadratic approximation may not always yield accurate VAR estimates, we also develop a low variance Monte Carlo method. This method uses the quadratic approximation to guide the selection of an effective importance sampling distribution that samples risk factors so that large losses occur more often. Variance is further reduced by combining the importance sampling with stratified sampling. Numerical results on a variety of test portfolios indicate that large variance reductions are typically obtained. Both methods developed in this paper overcome difficulties associated with VAR calculation with heavytailed risk factors. The Monte Carlo method also extends to the problem of estimating the conditional excess, sometimes known as the conditional VAR.
Numerical inversion of probability generating functions
 Oper. Res. Letters
, 1992
"... Random quantities of interest in operations research models can often be determined conveniently in the form of transforms. Hence, numerical transform inversion can be an effective way to obtain desired numerical values of cumulative distribution functions, probability density functions and probabil ..."
Abstract

Cited by 62 (19 self)
 Add to MetaCart
(Show Context)
Random quantities of interest in operations research models can often be determined conveniently in the form of transforms. Hence, numerical transform inversion can be an effective way to obtain desired numerical values of cumulative distribution functions, probability density functions and probability mass functions. However, numerical transform inversion has not been widely used. This lack of use seems to be due, at least in part, to good simple numerical inversion algorithms not being well known. To help remedy this situation, in this paper we present a version of the Fourierseries method for numerically inverting probability generating functions. We obtain a simple algorithm with a convenient error bound from the discrete Poisson summation formula. The same general approach applies to other transforms. Key Words: numerical inversion of transforms, computational probability, generating functions, Fourierseries method, Poisson summation formula, discrete Fourier transform.
Exponential approximations for tail probabilities in queues, I: waiting times
 Oper. Res
, 1995
"... In this paper, we focus on simple exponential approximations for steadystate tail probabilities in G/GI/1 queues based on largetime asymptotics. We relate the largetime asymptotics for the steadystate waiting time, sojourn time and workload. We evaluate the exponential approximations based on th ..."
Abstract

Cited by 54 (21 self)
 Add to MetaCart
(Show Context)
In this paper, we focus on simple exponential approximations for steadystate tail probabilities in G/GI/1 queues based on largetime asymptotics. We relate the largetime asymptotics for the steadystate waiting time, sojourn time and workload. We evaluate the exponential approximations based on the exact asymptotic parameters and their approximations by making comparisons with exact numerical results for BMAP/GI/1 queues. Numerical examples show that the exponential approximations are remarkably accurate at the 90 th percentile and beyond. Key words: queues; approximations; asymptotics; tail probabilities; sojourn time and workload.