Results 1 
4 of
4
Unfolding finitist arithmetic
, 2010
"... The concept of the (full) unfolding U(S) of a schematic system S is used to answer the following question: Which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S? The program to determine U(S) for various systems S of foundational significan ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
The concept of the (full) unfolding U(S) of a schematic system S is used to answer the following question: Which operations and predicates, and which principles concerning them, ought to be accepted if one has accepted S? The program to determine U(S) for various systems S of foundational significance was previously carried out for a system of nonfinitist arithmetic, NFA; it was shown that U(NFA) is prooftheoretically equivalent to predicative analysis. In the present paper we work out the unfolding notions for a basic schematic system of finitist arithmetic, FA, and for an extension of that by a form BR of the socalled Bar Rule. It is shown that U(FA) and U(FA + BR) are prooftheoretically equivalent, respectively, to Primitive Recursive Arithmetic, PRA, and to Peano Arithmetic, PA.
Weak theories of truth and explicit mathematics. Submitted for publication. 19
"... We study weak theories of truth over combinatory logic and their relationship to weak systems of explicit mathematics. In particular, we consider two truth theories TPR and TPT of primitive recursive and feasible strength. The latter theory is a novel abstract truththeoretic setting which is able t ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
We study weak theories of truth over combinatory logic and their relationship to weak systems of explicit mathematics. In particular, we consider two truth theories TPR and TPT of primitive recursive and feasible strength. The latter theory is a novel abstract truththeoretic setting which is able to interpret expressive feasible subsystems of explicit mathematics. 1
Unfolding feasible arithmetic and weak truth
, 2012
"... In this paper we continue Feferman’s unfolding program initiated in [11] which uses the concept of the unfolding U(S) of a schematic system S in order to describe those operations, predicates and principles concerning them, which are implicit in the acceptance of S. The program has been carried thro ..."
Abstract

Cited by 1 (1 self)
 Add to MetaCart
In this paper we continue Feferman’s unfolding program initiated in [11] which uses the concept of the unfolding U(S) of a schematic system S in order to describe those operations, predicates and principles concerning them, which are implicit in the acceptance of S. The program has been carried through for a schematic system of nonfinitist arithmetic NFA in Feferman and Strahm [13] and for a system FA (with and without Bar rule) in Feferman and Strahm [14]. The present contribution elucidates the concept of unfolding for a basic schematic system FEA of feasible arithmetic. Apart from the operational unfolding U0(FEA) of FEA, we study two full unfolding notions, namely the predicate unfolding U(FEA) and a more general truth unfolding UT(FEA) of FEA, the latter making use of a truth predicate added to the language of the operational unfolding. The main results obtained are that the provably convergent functions on binary words for all three unfolding systems are precisely those being computable in polynomial time. The upper bound computations make essential use of a specific theory of truth TPT over combinatory logic, which has recently been introduced in Eberhard and Strahm [7] and Eberhard [6] and whose involved prooftheoretic analysis is due to Eberhard [6]. The results of this paper were first announced in [8].
PREDICATIVITY BEYOND Γ0
, 2005
"... Abstract. We reevaluate the claim that predicative reasoning (given the natural numbers) is limited by the FefermanSchütte ordinal Γ0. First we comprehensively criticize the arguments that have been offered in support of this position. Then we analyze predicativism from first principles and develop ..."
Abstract
 Add to MetaCart
Abstract. We reevaluate the claim that predicative reasoning (given the natural numbers) is limited by the FefermanSchütte ordinal Γ0. First we comprehensively criticize the arguments that have been offered in support of this position. Then we analyze predicativism from first principles and develop a general method for accessing ordinals which is predicatively valid according to this analysis. We find that the Veblen ordinal φΩω(0), and larger ordinals, are predicatively provable. The precise delineation of the extent of predicative reasoning is possibly one of the most remarkable modern results in the foundations of mathematics. Building on