Results 1  10
of
101
The Maude 2.0 system
 Rewriting Techniques and Applications, Proceedings of the 14th International Conference
, 2003
"... Abstract. This paper gives an overviewof the Maude 2.0 system. We emphasize the full generality with which rewriting logic and membership equational logic are supported, operational semantics issues, the new builtin modules, the more general Full Maude module algebra, the new METALEVEL module, the ..."
Abstract

Cited by 80 (17 self)
 Add to MetaCart
Abstract. This paper gives an overviewof the Maude 2.0 system. We emphasize the full generality with which rewriting logic and membership equational logic are supported, operational semantics issues, the new builtin modules, the more general Full Maude module algebra, the new METALEVEL module, the LTL model checker, and newimplementation techniques yielding substantial performance improvements in rewriting modulo. We also comment on Maude’s formal tool environment and on applications. 1
The Maude LTL Model Checker
, 2002
"... The Maude LTL model checker supports onthey explicitstate model checking of concurrent systems expressed as rewrite theories with performance comparable to that of current tools of that kind, such as SPIN. This greatly expands the range of applications amenable to model checking analysis. Besides ..."
Abstract

Cited by 51 (12 self)
 Add to MetaCart
The Maude LTL model checker supports onthey explicitstate model checking of concurrent systems expressed as rewrite theories with performance comparable to that of current tools of that kind, such as SPIN. This greatly expands the range of applications amenable to model checking analysis. Besides traditional areas well supported by current tools, such as hardware and communication protocols, many new applications in areas such as rewriting logic models of cell biology, or nextgeneration reective distributed systems can be easily speci ed and model checked with our tool.
The Rewriting Logic Semantics Project
 SOS 2005 PRELIMINARY VERSION
, 2005
"... Rewriting logic is a flexible and expressive logical framework that unifies denotational semantics and SOS in a novel way, avoiding their respective limitations and allowing very succinct semantic definitions. The fact that a rewrite theory’s axioms include both equations and rewrite rules provides ..."
Abstract

Cited by 39 (11 self)
 Add to MetaCart
Rewriting logic is a flexible and expressive logical framework that unifies denotational semantics and SOS in a novel way, avoiding their respective limitations and allowing very succinct semantic definitions. The fact that a rewrite theory’s axioms include both equations and rewrite rules provides a very useful “abstraction knob” to find the right balance between abstraction and observability in semantic definitions. Such semantic definitions are directly executable as interpreters in a rewriting logic language such as Maude, whose generic formal tools can be used to endow those interpreters with powerful program analysis capabilities.
Rewriting Logic Semantics: From Language Specifications to Formal Analysis Tools
 In Proceedings of the IJCAR 2004. LNCS
, 2004
"... Abstract. Formal semantic definitions of concurrent languages, when specified in a wellsuited semantic framework and supported by generic and efficient formal tools, can be the basis of powerful software analysis tools. Such tools can be obtained for free from the semantic definitions; in our exper ..."
Abstract

Cited by 35 (9 self)
 Add to MetaCart
Abstract. Formal semantic definitions of concurrent languages, when specified in a wellsuited semantic framework and supported by generic and efficient formal tools, can be the basis of powerful software analysis tools. Such tools can be obtained for free from the semantic definitions; in our experience in just the few weeks required to define a language’s semantics even for large languages like Java. By combining, yet distinguishing, both equations and rules, rewriting logic semantic definitions unify both the semantic equations of equational semantics (in their higherorder denotational version or their firstorder algebraic counterpart) and the semantic rules of SOS. Several limitations of both SOS and equational semantics are thus overcome within this unified framework. By using a highperformance implementation of rewriting logic such as Maude, a language’s formal specification can be automatically transformed into an efficient interpreter. Furthermore, by using Maude’s breadth first search command, we also obtain for free a semidecision procedure for finding failures of safety properties; and by using Maude’s LTL model checker, we obtain, also for free, a decision procedure for LTL properties of finitestate programs. These possibilities, and the competitive performance of the analysis tools thus obtained, are illustrated by means of a concurrent Camllike language; similar experience with Java (source and JVM) programs is also summarized. 1
Generalized Rewrite Theories
 PROC. 30TH INTERNATIONAL COLLOQUIUM ON AUTOMATA, LANGUAGES AND PROGRAMMING (ICALP 2003), VOLUME 2719 OF LECTURE NOTES IN COMPUTER SCIENCE
, 2003
"... Since its introduction, more than a decade ago, rewriting logic has attracted the interest of both theorists and practitioners, who have contributed in showing its generality as a semantic and logical framework and also as a programming paradigm. The experimentation conducted in these years has s ..."
Abstract

Cited by 35 (15 self)
 Add to MetaCart
Since its introduction, more than a decade ago, rewriting logic has attracted the interest of both theorists and practitioners, who have contributed in showing its generality as a semantic and logical framework and also as a programming paradigm. The experimentation conducted in these years has suggested that some significant extensions to the original definition of the logic would be very useful in practice. In particular, the Maude system now supports subsorting and conditions in the equational logic for data, and also frozen arguments to block undesired nested rewritings; moreover, it allows equality and membership assertions in rule conditions. In this paper, we give a detailed presentation of the inference rules, model theory, and completeness of such generalized rewrite theories.
Rewritingbased Techniques for Runtime Verification
"... Techniques for efficiently evaluating future time Linear Temporal Logic (abbreviated LTL) formulae on finite execution traces are presented. While the standard models of LTL are infinite traces, finite traces appear naturally when testing and/or monitoring real applications that only run for limi ..."
Abstract

Cited by 29 (1 self)
 Add to MetaCart
Techniques for efficiently evaluating future time Linear Temporal Logic (abbreviated LTL) formulae on finite execution traces are presented. While the standard models of LTL are infinite traces, finite traces appear naturally when testing and/or monitoring real applications that only run for limited time periods. A finite trace variant of LTL is formally defined, together with an immediate executable semantics which turns out to be quite inefficient if used directly, via rewriting, as a monitoring procedure. Then three algorithms are investigated. First, a simple synthesis algorithm for monitors based on dynamic programming is presented; despite the e# ciency of the generated monitors, they unfortunately need to analyze the trace backwards, thus making them unusable in most practical situations. To circumvent this problem, two rewritingbased practical algorithms are further investigated, one using rewriting directly as a means for online monitoring, and the other using rewriting to generate automatalike monitors, called binary transition tree finite state machines (and abbreviated BTTFSMs). Both rewriting algorithms are implemented in Maude, an executable specification language based on a very e#cient implementation of term rewriting. The first rewriting algorithm essentially consists of a set of equations establishing an executable semantics of LTL, using a simple formula transforming approach. This algorithm is further improved to build automata onthefly via caching and reuse of rewrites (called memoization), resulting in a very e#cient and small Maude program that can be used to monitor program executions. The second rewriting algorithm builds on the first one and synthesizes provably minimal BTTFSMs from LTL formulae, which can then be used to a...
Symbolic Reachability Analysis Using Narrowing and its Application to Verification of Cryptographic Protocols
 Journal of HigherOrder and Symbolic Computation
, 2004
"... Narrowing was introduced, and has traditionally been used, to solve equations in initial and free algebras modulo a set of equations E. This paper proposes a generalization of narrowing which can be used to solve reachability goals in initial and free models of a rewrite theory R. We show that narro ..."
Abstract

Cited by 28 (11 self)
 Add to MetaCart
Narrowing was introduced, and has traditionally been used, to solve equations in initial and free algebras modulo a set of equations E. This paper proposes a generalization of narrowing which can be used to solve reachability goals in initial and free models of a rewrite theory R. We show that narrowing is sound and weakly complete (i.e., complete for normalized solutions) under reasonable executability assumptions about R. We also show that in general narrowing is not strongly complete, that is, not complete when some solutions can be further rewritten by R. We then identify several large classes of rewrite theories, covering many practical applications, for which narrowing is strongly complete. Finally, we illustrate an application of narrowing to analysis of cryptographic protocols.
Fibring NonTruthFunctional Logics: Completeness Preservation
 Journal of Logic, Language and Information
, 2000
"... Fibring has been shown to be useful for combining logics endowed with truthfunctional semantics. One wonders if bring can be extended in order to cope with logics endowed with nontruthfunctional semantics as, for example, paraconsistent logics. The rst main contribution of the paper is a po ..."
Abstract

Cited by 26 (20 self)
 Add to MetaCart
Fibring has been shown to be useful for combining logics endowed with truthfunctional semantics. One wonders if bring can be extended in order to cope with logics endowed with nontruthfunctional semantics as, for example, paraconsistent logics. The rst main contribution of the paper is a positive answer to this question. Furthermore, it is shown that this extended notion of bring preserves completeness under certain reasonable conditions. This completeness transfer result, the second main contribution of the paper, generalizes the one established by Zanardo et al. and is obtained using a new technique exploiting the properties of the metalogic where the (possibly nontruthfunctional) valuations are de ned. The modal paraconsistent logic of da Costa and Carnielli is obtained by bring and its completeness is so established.
Equational abstractions
 of LNCS
, 2003
"... Abstract. Abstraction reduces the problem of whether an infinite state system satisfies version. The most common abstractions are quotients of the original system. We present a simple method of defining quotient abstractions by means of equations collapsing the set of states. Our method yields the m ..."
Abstract

Cited by 26 (12 self)
 Add to MetaCart
Abstract. Abstraction reduces the problem of whether an infinite state system satisfies version. The most common abstractions are quotients of the original system. We present a simple method of defining quotient abstractions by means of equations collapsing the set of states. Our method yields the minimal quotient system together with a set of proof obligations that guarantee its executability and can be discharged with tools such as those in the Maude formal environment.
Interpolation in Grothendieck Institutions
 THEORETICAL COMPUTER SCIENCE
, 2003
"... It is well known that interpolation properties of logics underlying specification formalisms play an important role in the study of structured specifications, they have also many other useful logical consequences. In this paper, we solve the interpolation problem for Grothendieck institutions which ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
It is well known that interpolation properties of logics underlying specification formalisms play an important role in the study of structured specifications, they have also many other useful logical consequences. In this paper, we solve the interpolation problem for Grothendieck institutions which have recently emerged as an important mathematical structure underlying heterogenous multilogic specification. Our main result can be used in the applications in several different ways. It can be used to establish interpolation properties for multilogic Grothendieck institutions, but also to lift interpolation properties from unsorted logics to their many sorted variants. The importance of the latter resides in the fact that, unlike other structural properties of logics, many sorted interpolation is a nontrivial generalisation of unsorted interpolation. The concepts, results, and the applications discussed in this paper are illustrated with several examples from conventional logic and algebraic specification theory.