Results 1  10
of
200
A survey of freeform object representation and recognition techniques
 Computer Vision and Image Understanding
, 2001
"... Advances in computer speed, memory capacity, and hardware graphics acceleration have made the interactive manipulation and visualization of complex, detailed (and therefore large) threedimensional models feasible. These models are either painstakingly designed through an elaborate CAD process or re ..."
Abstract

Cited by 161 (1 self)
 Add to MetaCart
(Show Context)
Advances in computer speed, memory capacity, and hardware graphics acceleration have made the interactive manipulation and visualization of complex, detailed (and therefore large) threedimensional models feasible. These models are either painstakingly designed through an elaborate CAD process or reverse engineered from sculpted prototypes using modern scanning technologies and integration methods. The availability of detailed data describing the shape of an object offers the computer vision practitioner new ways to recognize and localize freeform objects. This survey reviews recent literature on both the 3D model building process and techniques used to match and identify freeform objects from imagery. c ○ 2001 Academic Press 1.
An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments
, 2003
"... Digital 3D models of the environment are needed in rescue and inspection robotics, facility managements and architecture. This paper presents an automatic system for gaging and digitalization of 3D indoor environments. It consists of an autonomous mobile robot, a reliable 3D laser range finder and t ..."
Abstract

Cited by 95 (22 self)
 Add to MetaCart
Digital 3D models of the environment are needed in rescue and inspection robotics, facility managements and architecture. This paper presents an automatic system for gaging and digitalization of 3D indoor environments. It consists of an autonomous mobile robot, a reliable 3D laser range finder and three elaborated software modules. The first module, a fast variant of the Iterative Closest Points algorithm, registers the 3D scans in a common coordinate system and relocalizes the robot. The second module, a next best view planner, computes the next nominal pose based on the acquired 3D data while avoiding complicated obstacles. The third module, a closedloop and globally stable motor controller, navigates the mobile robot to a nominal pose on the base of odometry and avoids collisions with dynamical obstacles. The 3D laser range finder acquires a 3D scan at this pose. The proposed method allows one to digitalize large indoor environments fast and reliably without any intervention and solves the SLAM problem. The results of two 3D digitalization experiments are presented using a fast octreebased visualization method.
Efficiently combining positions and normals for precise 3d geometry
 ACM Transactions on Graphics (Proc. SIGGRAPH
, 2005
"... not use color information in order to focus on geometric aspects. Note how our method eliminates noise from the range image while introducing real detail. The surface normals are of the same quality or better than those from photometric stereo, while most of the lowfrequency bias has been eliminate ..."
Abstract

Cited by 91 (8 self)
 Add to MetaCart
not use color information in order to focus on geometric aspects. Note how our method eliminates noise from the range image while introducing real detail. The surface normals are of the same quality or better than those from photometric stereo, while most of the lowfrequency bias has been eliminated. Range scanning, manual 3D editing, and other modeling approaches can provide information about the geometry of surfaces in the form of either 3D positions (e.g., triangle meshes or range images) or orientations (normal maps or bump maps). We present an algorithm that combines these two kinds of estimates to produce a new surface that approximates both. Our formulation is linear, allowing it to operate efficiently on complex meshes commonly used in graphics. It also treats high and lowfrequency components separately, allowing it to optimally combine outputs from data sources such as stereo triangulation and photometric stereo, which have different errorvs.frequency characteristics. We demonstrate the ability of our technique to both recover highfrequency details and avoid lowfrequency bias, producing surfaces that are more widely applicable than position or orientation data alone. 1
Robust Global Registration
, 2005
"... We present an algorithm for the automatic alignment of two 3D shapes (data and model), without any assumptions about their initial positions. The algorithm computes for each surface point a descriptor based on local geometry that is robust to noise. A small number of feature points are automatically ..."
Abstract

Cited by 88 (10 self)
 Add to MetaCart
We present an algorithm for the automatic alignment of two 3D shapes (data and model), without any assumptions about their initial positions. The algorithm computes for each surface point a descriptor based on local geometry that is robust to noise. A small number of feature points are automatically picked from the data shape according to the uniqueness of the descriptor value at the point. For each feature point on the data, we use the descriptor values of the model to find potential corresponding points. We then develop a fast branchandbound algorithm based on distance matrix comparisons to select the optimal correspondence set and bring the two shapes into a coarse alignment. The result of our alignment algorithm is used as the initialization to ICP (iterative closest point) and its variants for fine registration of the data to the model. Our algorithm can be used for matching shapes that overlap only over parts of their extent, for building models from partial range scans, as well as for simple symmetry detection, and for matching shapes undergoing articulated motion.
Highquality texture reconstruction from multiple scans
 IEEE Trans. on
, 2001
"... ..."
(Show Context)
Fully Automatic Registration Of Multiple 3D Data Sets
, 2001
"... This paper presents a method for automatically registering multiple three dimensional (3D) data sets. Previous approaches required manual specification of initial pose estimates or relied on external pose measurement systems. In contrast, our method does not assume any knowledge of initial poses or ..."
Abstract

Cited by 72 (4 self)
 Add to MetaCart
(Show Context)
This paper presents a method for automatically registering multiple three dimensional (3D) data sets. Previous approaches required manual specification of initial pose estimates or relied on external pose measurement systems. In contrast, our method does not assume any knowledge of initial poses or even which data sets overlap. Our automatic registration algorithm begins by converting the input data into surface meshes, which are pairwise registered using a surface matching engine. The resulting matches are tested for surface consistency, but some incorrect matches may be locally undetectable. A global optimization process searches a graph constructed from these potentially faulty pairwise matches for a connected subgraph containing only correct matches, employing a global consistency measure to detect incorrect, but locally consistent matches. From this subgraph, the final poses of all views can be computed directly. We apply our algorithm to the problem of 3D digital reconstruction of real world objects and show results for a collection of automatically digitized objects.
Least squares 3D surface and curve matching
 ISPRS Journal of Photogrammetry and Remote Sensing
, 2005
"... The automatic coregistration of point clouds, representing 3D surfaces, is a relevant problem in 3D modeling. This multiple registration problem can be defined as a surface matching task. We treat it as least squares matching of overlapping surfaces. The surface may have been digitized/sampled poin ..."
Abstract

Cited by 69 (14 self)
 Add to MetaCart
The automatic coregistration of point clouds, representing 3D surfaces, is a relevant problem in 3D modeling. This multiple registration problem can be defined as a surface matching task. We treat it as least squares matching of overlapping surfaces. The surface may have been digitized/sampled point by point using a laser scanner device, a photogrammetric method or other surface measurement techniques. Our proposed method estimates the transformation parameters of one or more 3D search surfaces with respect to a 3D template surface, using the Generalized GaussMarkoff model, minimizing the sum of squares of the Euclidean distances between the surfaces. This formulation gives the opportunity of matching arbitrarily oriented 3D surface patches. It fully considers 3D geometry. Besides the mathematical model and execution aspects we address the further extensions of the basic model. We also show how this method can be used for curve matching in 3D space and matching of curves to surfaces. Some practical examples based on the registration of closerange laser scanner and photogrammetric point clouds are presented for the demonstration of the method. This surface matching technique is a generalization of the least squares image matching concept and offers high flexibility for any kind of 3D surface correspondence problem, as well as statistical tools for the analysis of the quality of final matching results.
Geometrically Stable Sampling for the ICP Algorithm
 Proc. International Conference on 3D Digital Imaging and Modeling
, 2003
"... The Iterative Closest Point (ICP) algorithm is a widely used method for aligning threedimensional point sets. The quality of alignment obtained by this algorithm depends heavily on choosing good pairs of corresponding points in the two datasets. If too many points are chosen from featureless region ..."
Abstract

Cited by 52 (5 self)
 Add to MetaCart
(Show Context)
The Iterative Closest Point (ICP) algorithm is a widely used method for aligning threedimensional point sets. The quality of alignment obtained by this algorithm depends heavily on choosing good pairs of corresponding points in the two datasets. If too many points are chosen from featureless regions of the data, the algorithm converges slowly, finds the wrong pose, or even diverges, especially in the presence of noise or miscalibration in the input data. In this paper, we describe a method for detecting uncertainty in pose, and we propose a point selection strategy for ICP that minimizes this uncertainty by choosing samples that constrain potentially unstable transformations.
Reassembling fractured objects by geometric matching
 TOG
"... We present a system for automatic reassembly of broken 3D solids. Given as input 3D digital models of the broken fragments, we analyze the geometry of the fracture surfaces to find a globally consistent reconstruction of the original object. Our reconstruction pipeline consists of a graphcuts based ..."
Abstract

Cited by 42 (5 self)
 Add to MetaCart
We present a system for automatic reassembly of broken 3D solids. Given as input 3D digital models of the broken fragments, we analyze the geometry of the fracture surfaces to find a globally consistent reconstruction of the original object. Our reconstruction pipeline consists of a graphcuts based segmentation algorithm for identifying potential fracture surfaces, featurebased robust global registration for pairwise matching of fragments, and simultaneous constrained local registration of multiple fragments. We develop several new techniques in the area of geometry processing, including the novel integral invariants for computing multiscale surface characteristics, registration based on forward search techniques and surface consistency, and a nonpenetrating iterated closest point algorithm. We illustrate the performance of our algorithms on a number of realworld examples.