Results 1  10
of
164
Reinforcement learning: a survey
 Journal of Artificial Intelligence Research
, 1996
"... This paper surveys the field of reinforcement learning from a computerscience perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem ..."
Abstract

Cited by 1298 (23 self)
 Add to MetaCart
This paper surveys the field of reinforcement learning from a computerscience perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trialanderror interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word "reinforcement." The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
Between MDPs and SemiMDPs: A Framework for Temporal Abstraction in Reinforcement Learning
 Artificial Intelligence
, 1999
"... Learning, planning, and representing knowledge at multiple levels of temporal abstraction are key, longstanding challenges for AI. In this paper we consider how these challenges can be addressed within the mathematical framework of reinforcement learning and Markov decision processes (MDPs). We ..."
Abstract

Cited by 426 (29 self)
 Add to MetaCart
Learning, planning, and representing knowledge at multiple levels of temporal abstraction are key, longstanding challenges for AI. In this paper we consider how these challenges can be addressed within the mathematical framework of reinforcement learning and Markov decision processes (MDPs). We extend the usual notion of action in this framework to include optionsclosedloop policies for taking action over a period of time. Examples of options include picking up an object, going to lunch, and traveling to a distant city, as well as primitive actions such as muscle twitches and joint torques. Overall, we show that options enable temporally abstract knowledge and action to be included in the reinforcement learning framework in a natural and general way. In particular, we show that options may be used interchangeably with primitive actions in planning methods such as dynamic programming and in learning methods such as Qlearning.
Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition
 Journal of Artificial Intelligence Research
, 2000
"... This paper presents a new approach to hierarchical reinforcement learning based on decomposing the target Markov decision process (MDP) into a hierarchy of smaller MDPs and decomposing the value function of the target MDP into an additive combination of the value functions of the smaller MDPs. Th ..."
Abstract

Cited by 367 (6 self)
 Add to MetaCart
This paper presents a new approach to hierarchical reinforcement learning based on decomposing the target Markov decision process (MDP) into a hierarchy of smaller MDPs and decomposing the value function of the target MDP into an additive combination of the value functions of the smaller MDPs. The decomposition, known as the MAXQ decomposition, has both a procedural semanticsas a subroutine hierarchyand a declarative semanticsas a representation of the value function of a hierarchical policy. MAXQ unifies and extends previous work on hierarchical reinforcement learning by Singh, Kaelbling, and Dayan and Hinton. It is based on the assumption that the programmer can identify useful subgoals and define subtasks that achieve these subgoals. By defining such subgoals, the programmer constrains the set of policies that need to be considered during reinforcement learning. The MAXQ value function decomposition can represent the value function of any policy that is consisten...
Reinforcement learning with hierarchies of machines
 Advances in Neural Information Processing Systems 10
, 1998
"... We present a new approach to reinforcement learning in which the policies considered by the learning process are constrained by hierarchies of partially specified machines. This allows for the use of prior knowledge to reduce the search space and provides a framework in which knowledge can be transf ..."
Abstract

Cited by 240 (9 self)
 Add to MetaCart
We present a new approach to reinforcement learning in which the policies considered by the learning process are constrained by hierarchies of partially specified machines. This allows for the use of prior knowledge to reduce the search space and provides a framework in which knowledge can be transferred across problems and in which component solutions can be recombined to solve larger and more complicated problems. Our approach can be seen as providing a link between reinforcement learning and “behaviorbased ” or “teleoreactive ” approaches to control. We present provably convergent algorithms for problemsolving and learning with hierarchical machines and demonstrate their effectiveness on a problem with several thousand states. 1
Nearoptimal reinforcement learning in polynomial time
 Machine Learning
, 1998
"... We present new algorithms for reinforcement learning, and prove that they have polynomial bounds on the resources required to achieve nearoptimal return in general Markov decision processes. After observing that the number of actions required to approach the optimal return is lower bounded by the m ..."
Abstract

Cited by 237 (3 self)
 Add to MetaCart
We present new algorithms for reinforcement learning, and prove that they have polynomial bounds on the resources required to achieve nearoptimal return in general Markov decision processes. After observing that the number of actions required to approach the optimal return is lower bounded by the mixing time T of the optimal policy (in the undiscounted case) or by the horizon time T (in the discounted case), we then give algorithms requiring a number of actions and total computation time that are only polynomial in T and the number of states, for both the undiscounted and discounted cases. An interesting aspect of our algorithms is their explicit handling of the ExplorationExploitation tradeoff. 1
Learning policies for partially observable environments: Scaling up
, 1995
"... Partially observable Markov decision processes (pomdp's) model decision problems in which an agent tries to maximize its reward in the face of limited and/or noisy sensor feedback. While the study of pomdp's is motivated by a need to address realistic problems, existing techniques for finding optim ..."
Abstract

Cited by 234 (11 self)
 Add to MetaCart
Partially observable Markov decision processes (pomdp's) model decision problems in which an agent tries to maximize its reward in the face of limited and/or noisy sensor feedback. While the study of pomdp's is motivated by a need to address realistic problems, existing techniques for finding optimal behavior do not appear to scale well and have been unable to find satisfactory policies for problems with more than a dozen states. After a brief review of pomdp's, this paper discusses several simple solution methods and shows that all are capable of finding nearoptimal policies for a selection of extremely small pomdp's taken from the learning literature. In contrast, we show that none are able to solve a slightly larger and noisier problem based on robot navigation. We find that a combination of two novel approaches performs well on these problems and suggest methods for scaling to even larger and more complicated domains. 1 Introduction Mobile robots must act on the basis of thei...
An analysis of temporaldifference learning with function approximation
 IEEE Transactions on Automatic Control
, 1997
"... We discuss the temporaldifference learning algorithm, as applied to approximating the costtogo function of an infinitehorizon discounted Markov chain. The algorithm weanalyze updates parameters of a linear function approximator online, duringasingle endless trajectory of an irreducible aperiodi ..."
Abstract

Cited by 218 (7 self)
 Add to MetaCart
We discuss the temporaldifference learning algorithm, as applied to approximating the costtogo function of an infinitehorizon discounted Markov chain. The algorithm weanalyze updates parameters of a linear function approximator online, duringasingle endless trajectory of an irreducible aperiodic Markov chain with a finite or infinite state space. We present a proof of convergence (with probability 1), a characterization of the limit of convergence, and a bound on the resulting approximation error. Furthermore, our analysis is based on a new line of reasoning that provides new intuition about the dynamics of temporaldifference learning. In addition to proving new and stronger positive results than those previously available, we identify the significance of online updating and potential hazards associated with the use of nonlinear function approximators. First, we prove that divergence may occur when updates are not based on trajectories of the Markov chain. This fact reconciles positive and negative results that have been discussed in the literature, regarding the soundness of temporaldifference learning. Second, we present anexample illustrating the possibility of divergence when temporaldifference learning is used in the presence of a nonlinear function approximator.
Stable Function Approximation in Dynamic Programming
 IN MACHINE LEARNING: PROCEEDINGS OF THE TWELFTH INTERNATIONAL CONFERENCE
, 1995
"... The success of reinforcement learning in practical problems depends on the ability tocombine function approximation with temporal difference methods such as value iteration. Experiments in this area have produced mixed results; there have been both notable successes and notable disappointments. Theo ..."
Abstract

Cited by 208 (5 self)
 Add to MetaCart
The success of reinforcement learning in practical problems depends on the ability tocombine function approximation with temporal difference methods such as value iteration. Experiments in this area have produced mixed results; there have been both notable successes and notable disappointments. Theory has been scarce, mostly due to the difficulty of reasoning about function approximators that generalize beyond the observed data. We provide a proof of convergence for a wide class of temporal difference methods involving function approximators such as knearestneighbor, and show experimentally that these methods can be useful. The proof is based on a view of function approximators as expansion or contraction mappings. In addition, we present a novel view of approximate value iteration: an approximate algorithm for one environment turns out to be an exact algorithm for a different environment.
Reinforcement Learning with Replacing Eligibility Traces
 MACHINE LEARNING
, 1996
"... The eligibility trace is one of the basic mechanisms used in reinforcement learning to handle delayed reward. In this paper we introduce a new kind of eligibility trace, the replacing trace, analyze it theoretically, and show that it results in faster, more reliable learning than the conventional ..."
Abstract

Cited by 186 (11 self)
 Add to MetaCart
The eligibility trace is one of the basic mechanisms used in reinforcement learning to handle delayed reward. In this paper we introduce a new kind of eligibility trace, the replacing trace, analyze it theoretically, and show that it results in faster, more reliable learning than the conventional trace. Both kinds of trace assign credit to prior events according to how recently they occurred, but only the conventional trace gives greater credit to repeated events. Our analysis is for conventional and replacetrace versions of the offline TD(1) algorithm applied to undiscounted absorbing Markov chains. First, we show that these methods converge under repeated presentations of the training set to the same predictions as two well known Monte Carlo methods. We then analyze the relative efficiency of the two Monte Carlo methods. We show that the method corresponding to conventional TD is biased, whereas the method corresponding to replacetrace TD is unbiased. In addition, we show that t...
The neural basis of human error processing: Reinforcement learning, dopamine, and the errorrelated negativity.” Psychological Review 109:679–709
"... The authors present a unified account of 2 neural systems concerned with the development and expression of adaptive behaviors: a mesencephalic dopamine system for reinforcement learning and a “generic ” errorprocessing system associated with the anterior cingulate cortex. The existence of the error ..."
Abstract

Cited by 184 (12 self)
 Add to MetaCart
The authors present a unified account of 2 neural systems concerned with the development and expression of adaptive behaviors: a mesencephalic dopamine system for reinforcement learning and a “generic ” errorprocessing system associated with the anterior cingulate cortex. The existence of the errorprocessing system has been inferred from the errorrelated negativity (ERN), a component of the eventrelated brain potential elicited when human participants commit errors in reactiontime tasks. The authors propose that the ERN is generated when a negative reinforcement learning signal is conveyed to the anterior cingulate cortex via the mesencephalic dopamine system and that this signal is used by the anterior cingulate cortex to modify performance on the task at hand. They provide support for this proposal using both computational modeling and psychophysiological experimentation. Human beings learn from the consequences of their actions. Thorndike (1911/1970) originally described this phenomenon with his law of effect, which made explicit the commonsense notion that actions that are followed by feelings of satisfaction are more likely to be generated again in the future, whereas actions that are followed by negative outcomes are less likely to reoccur. This