Results 1  10
of
34
Dynamic Bayesian Networks: Representation, Inference and Learning
, 2002
"... Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have bee ..."
Abstract

Cited by 564 (3 self)
 Add to MetaCart
Modelling sequential data is important in many areas of science and engineering. Hidden Markov models (HMMs) and Kalman filter models (KFMs) are popular for this because they are simple and flexible. For example, HMMs have been used for speech recognition and biosequence analysis, and KFMs have been used for problems ranging from tracking planes and missiles to predicting the economy. However, HMMs
and KFMs are limited in their “expressive power”. Dynamic Bayesian Networks (DBNs) generalize HMMs by allowing the state space to be represented in factored form, instead of as a single discrete random variable. DBNs generalize KFMs by allowing arbitrary probability distributions, not just (unimodal) linearGaussian. In this thesis, I will discuss how to represent many different kinds of models as DBNs, how to perform exact and approximate inference in DBNs, and how to learn DBN models from sequential data.
In particular, the main novel technical contributions of this thesis are as follows: a way of representing
Hierarchical HMMs as DBNs, which enables inference to be done in O(T) time instead of O(T 3), where T is the length of the sequence; an exact smoothing algorithm that takes O(log T) space instead of O(T); a simple way of using the junction tree algorithm for online inference in DBNs; new complexity bounds on exact online inference in DBNs; a new deterministic approximate inference algorithm called factored frontier; an analysis of the relationship between the BK algorithm and loopy belief propagation; a way of
applying RaoBlackwellised particle filtering to DBNs in general, and the SLAM (simultaneous localization
and mapping) problem in particular; a way of extending the structural EM algorithm to DBNs; and a variety of different applications of DBNs. However, perhaps the main value of the thesis is its catholic presentation of the field of sequential data modelling.
Active preference learning for personalized calendar scheduling assistance
 In Proc. of IUI’05
, 2005
"... We present PLIANT, a learning system that supports adaptive assistance in an open calendaring system. PLIANT learns user preferences from the feedback that naturally occurs during interactive scheduling. It contributes a novel application of active learning in a domain where the choice of candidate ..."
Abstract

Cited by 29 (8 self)
 Add to MetaCart
We present PLIANT, a learning system that supports adaptive assistance in an open calendaring system. PLIANT learns user preferences from the feedback that naturally occurs during interactive scheduling. It contributes a novel application of active learning in a domain where the choice of candidate schedules to present to the user must balance usefulness to the learning module with immediate benefit to the user. Our experimental results provide evidence of PLIANT’s ability to learn user preferences under various conditions and reveal the tradeoffs made by the different active learning selection strategies.
Exact bayesian structure learning from uncertain interventions
 AI & Statistics, In
, 2007
"... We show how to apply the dynamic programming algorithm of Koivisto and Sood [KS04, Koi06], which computes the exact posterior marginal edge probabilities p(Gij = 1D) of a DAG G given data D, to the case where the data is obtained by interventions (experiments). In particular, we consider the case w ..."
Abstract

Cited by 24 (5 self)
 Add to MetaCart
We show how to apply the dynamic programming algorithm of Koivisto and Sood [KS04, Koi06], which computes the exact posterior marginal edge probabilities p(Gij = 1D) of a DAG G given data D, to the case where the data is obtained by interventions (experiments). In particular, we consider the case where the targets of the interventions are a priori unknown. We show that it is possible to learn the targets of intervention at the same time as learning the causal structure. We apply our exact technique to a biological data set that had previously been analyzed using MCMC [SPP + 05, EW06, WGH06]. 1
Causal Graph Based Decomposition of Factored MDPs
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2006
"... We present Variable Influence Structure Analysis, or VISA, an algorithm that performs hierarchical decomposition of factored Markov decision processes. VISA uses a dynamic Bayesian network model of actions, and constructs a causal graph that captures relationships between state variables. In tasks ..."
Abstract

Cited by 22 (3 self)
 Add to MetaCart
We present Variable Influence Structure Analysis, or VISA, an algorithm that performs hierarchical decomposition of factored Markov decision processes. VISA uses a dynamic Bayesian network model of actions, and constructs a causal graph that captures relationships between state variables. In tasks
BNT structure learning package: documentation and experiments
 Technical Report FRE CNRS 2645). Laboratoire PSI, Universitè et INSA de Rouen
, 2004
"... Bayesian networks are a formalism for probabilistic reasonning that is more and more used for classification task in datamining. In some situations, the network structure is given by an expert, otherwise, retrieving it from a database is a NPhard problem, notably because of the search space comple ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
Bayesian networks are a formalism for probabilistic reasonning that is more and more used for classification task in datamining. In some situations, the network structure is given by an expert, otherwise, retrieving it from a database is a NPhard problem, notably because of the search space complexity. In the last decade, lot of methods have been introduced to learn the network structure automatically, by simplifying the search space (augmented naive bayes, K2) or by using an heuristic in this search space (greedy search). Most of these methods deal with completely observed data, but some others can deal with incomplete data (SEM, MWSTEM). The Bayes Net Toolbox introduced by [Murphy, 2001a] for Matlab allows us using Bayesian Networks or learning them. But this toolbox is not ’state of the art ’ if we want to perform a Structural Learning, that’s why we propose this package.
Reconstruction of gene networks using Bayesian learning and manipulation experiments
 Bioinformatics
, 2004
"... learning and manipulation experiments ..."
Active Learning of Dynamic Bayesian Networks in Markov Decision Processes
"... Abstract. Several recent techniques for solving Markov decision processes use dynamic Bayesian networks to compactly represent tasks. The dynamic Bayesian network representation may not be given, in which case it is necessary to learn it if one wants to apply these techniques. We develop an algorith ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
Abstract. Several recent techniques for solving Markov decision processes use dynamic Bayesian networks to compactly represent tasks. The dynamic Bayesian network representation may not be given, in which case it is necessary to learn it if one wants to apply these techniques. We develop an algorithm for learning dynamic Bayesian network representations of Markov decision processes using data collected through exploration in the environment. To accelerate data collection we develop a novel scheme for active learning of the networks. We assume that it is not possible to sample the process in arbitrary states, only along trajectories, which prevents us from applying existing active learning techniques. Our active learning scheme selects actions that maximize the total entropy of distributions used to evaluate potential refinements of the networks. 1
Active learning of causal networks with intervention experiments and optimal
, 2008
"... The causal discovery from data is important for various scientific investigations. Because we cannot distinguish the different directed acyclic graphs (DAGs) in a Markov equivalence class learned from observational data, we have to collect further information on causal structures from experiments wi ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
The causal discovery from data is important for various scientific investigations. Because we cannot distinguish the different directed acyclic graphs (DAGs) in a Markov equivalence class learned from observational data, we have to collect further information on causal structures from experiments with external interventions. In this paper, we propose an active learning approach for discovering causal structures in which we first find a Markov equivalence class from observational data, and then we orient undirected edges in every chain component via intervention experiments separately. In the experiments, some variables are manipulated through external interventions. We discuss two kinds of intervention experiments, randomized experiment and quasiexperiment. Furthermore, we give two optimal designs of experiments, a batchintervention design and a sequentialintervention design, to minimize the number of manipulated variables and the set of candidate structures based on the minimax and the maximum entropy criteria. We show theoretically that structural learning can be done locally in subgraphs of chain components without need of checking illegal vstructures and cycles in the whole network and that a Markov equivalence subclass obtained after each intervention can still be depicted as a chain graph.
Interventions and causal inference
 Philosophy of Science
, 2007
"... The literature on causal discovery has focused on interventions that involve randomly assigning values to a single variable. But such a randomized intervention is not the only possibility, nor is it always optimal. In some cases it is impossible or it would be unethical to perform such an interventi ..."
Abstract

Cited by 5 (1 self)
 Add to MetaCart
The literature on causal discovery has focused on interventions that involve randomly assigning values to a single variable. But such a randomized intervention is not the only possibility, nor is it always optimal. In some cases it is impossible or it would be unethical to perform such an intervention. We provide an account of “hard ” and “soft” interventions, and discuss what they can contribute to causal discovery. We also describe how the choice of the optimal intervention(s) depends heavily on the particular experimental setup and the assumptions that can be made.