Results 1  10
of
291
Reinforcement learning: a survey
 Journal of Artificial Intelligence Research
, 1996
"... This paper surveys the field of reinforcement learning from a computerscience perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem ..."
Abstract

Cited by 1298 (23 self)
 Add to MetaCart
This paper surveys the field of reinforcement learning from a computerscience perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trialanderror interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word "reinforcement." The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding
 Advances in Neural Information Processing Systems 8
, 1996
"... On large problems, reinforcement learning systems must use parameterized function approximators such as neural networks in order to generalize between similar situations and actions. In these cases there are no strong theoretical results on the accuracy of convergence, and computational results have ..."
Abstract

Cited by 355 (18 self)
 Add to MetaCart
On large problems, reinforcement learning systems must use parameterized function approximators such as neural networks in order to generalize between similar situations and actions. In these cases there are no strong theoretical results on the accuracy of convergence, and computational results have been mixed. In particular, Boyan and Moore reported at last year's meeting a series of negative results in attempting to apply dynamic programming together with function approximation to simple control problems with continuous state spaces. In this paper, we present positive results for all the control tasks they attempted, and for one that is significantly larger. The most important differences are that we used sparsecoarsecoded function approximators (CMACs) whereas they used mostly global function approximators, and that we learned online whereas they learned offline. Boyan and Moore and others have suggested that the problems they encountered could be solved by using actual outcomes (...
Prioritized sweeping: Reinforcement learning with less data and less time
 Machine Learning
, 1993
"... We present a new algorithm, Prioritized Sweeping, for e cient prediction and control of stochastic Markov systems. Incremental learning methods such asTemporal Di erencing and Qlearning have fast real time performance. Classical methods are slower, but more accurate, because they make full use of ..."
Abstract

Cited by 316 (5 self)
 Add to MetaCart
We present a new algorithm, Prioritized Sweeping, for e cient prediction and control of stochastic Markov systems. Incremental learning methods such asTemporal Di erencing and Qlearning have fast real time performance. Classical methods are slower, but more accurate, because they make full use of the observations. Prioritized Sweeping aims for the best of both worlds. It uses all previous experiences both to prioritize important dynamic programming sweeps and to guide the exploration of statespace. We compare Prioritized Sweeping with other reinforcement learning schemes for a number of di erent stochastic optimal control problems. It successfully solves large statespace real time problems with which other methods have di culty. 1 1
Generalization in Reinforcement Learning: Safely Approximating the Value Function
 Advances in Neural Information Processing Systems 7
, 1995
"... To appear in: G. Tesauro, D. S. Touretzky and T. K. Leen, eds., Advances in Neural Information Processing Systems 7, MIT Press, Cambridge MA, 1995. A straightforward approach to the curse of dimensionality in reinforcement learning and dynamic programming is to replace the lookup table with a genera ..."
Abstract

Cited by 251 (3 self)
 Add to MetaCart
To appear in: G. Tesauro, D. S. Touretzky and T. K. Leen, eds., Advances in Neural Information Processing Systems 7, MIT Press, Cambridge MA, 1995. A straightforward approach to the curse of dimensionality in reinforcement learning and dynamic programming is to replace the lookup table with a generalizing function approximator such as a neural net. Although this has been successful in the domain of backgammon, there is no guarantee of convergence. In this paper, we show that the combination of dynamic programming and function approximation is not robust, and in even very benign cases, may produce an entirely wrong policy. We then introduce GrowSupport, a new algorithm which is safe from divergence yet can still reap the benefits of successful generalization. 1 INTRODUCTION Reinforcement learningthe problem of getting an agent to learn to act from sparse, delayed rewardshas been advanced by techniques based on dynamic programming (DP). These algorithms compute a value function ...
Residual Algorithms: Reinforcement Learning with Function Approximation
 In Proceedings of the Twelfth International Conference on Machine Learning
, 1995
"... A number of reinforcement learning algorithms have been developed that are guaranteed to converge to the optimal solution when used with lookup tables. It is shown, however, that these algorithms can easily become unstable when implemented directly with a general functionapproximation system, such ..."
Abstract

Cited by 237 (5 self)
 Add to MetaCart
A number of reinforcement learning algorithms have been developed that are guaranteed to converge to the optimal solution when used with lookup tables. It is shown, however, that these algorithms can easily become unstable when implemented directly with a general functionapproximation system, such as a sigmoidal multilayer perceptron, a radialbasisfunction system, a memorybased learning system, or even a linear functionapproximation system. A new class of algorithms, residual gradient algorithms, is proposed, which perform gradient descent on the mean squared Bellman residual, guaranteeing convergence. It is shown, however, that they may learn very slowly in some cases. A larger class of algorithms, residual algorithms, is proposed that has the guaranteed convergence of the residual gradient algorithms, yet can retain the fast learning speed of direct algorithms. In fact, both direct and residual gradient algorithms are shown to be special cases of residual algorithms, and it is s...
An analysis of temporaldifference learning with function approximation
 IEEE Transactions on Automatic Control
, 1997
"... We discuss the temporaldifference learning algorithm, as applied to approximating the costtogo function of an infinitehorizon discounted Markov chain. The algorithm weanalyze updates parameters of a linear function approximator online, duringasingle endless trajectory of an irreducible aperiodi ..."
Abstract

Cited by 218 (7 self)
 Add to MetaCart
We discuss the temporaldifference learning algorithm, as applied to approximating the costtogo function of an infinitehorizon discounted Markov chain. The algorithm weanalyze updates parameters of a linear function approximator online, duringasingle endless trajectory of an irreducible aperiodic Markov chain with a finite or infinite state space. We present a proof of convergence (with probability 1), a characterization of the limit of convergence, and a bound on the resulting approximation error. Furthermore, our analysis is based on a new line of reasoning that provides new intuition about the dynamics of temporaldifference learning. In addition to proving new and stronger positive results than those previously available, we identify the significance of online updating and potential hazards associated with the use of nonlinear function approximators. First, we prove that divergence may occur when updates are not based on trajectories of the Markov chain. This fact reconciles positive and negative results that have been discussed in the literature, regarding the soundness of temporaldifference learning. Second, we present anexample illustrating the possibility of divergence when temporaldifference learning is used in the presence of a nonlinear function approximator.
Reinforcement Learning with Replacing Eligibility Traces
 MACHINE LEARNING
, 1996
"... The eligibility trace is one of the basic mechanisms used in reinforcement learning to handle delayed reward. In this paper we introduce a new kind of eligibility trace, the replacing trace, analyze it theoretically, and show that it results in faster, more reliable learning than the conventional ..."
Abstract

Cited by 186 (11 self)
 Add to MetaCart
The eligibility trace is one of the basic mechanisms used in reinforcement learning to handle delayed reward. In this paper we introduce a new kind of eligibility trace, the replacing trace, analyze it theoretically, and show that it results in faster, more reliable learning than the conventional trace. Both kinds of trace assign credit to prior events according to how recently they occurred, but only the conventional trace gives greater credit to repeated events. Our analysis is for conventional and replacetrace versions of the offline TD(1) algorithm applied to undiscounted absorbing Markov chains. First, we show that these methods converge under repeated presentations of the training set to the same predictions as two well known Monte Carlo methods. We then analyze the relative efficiency of the two Monte Carlo methods. We show that the method corresponding to conventional TD is biased, whereas the method corresponding to replacetrace TD is unbiased. In addition, we show that t...
Greedy layerwise training of deep networks
 In NIPS
, 2007
"... Complexity theory of circuits strongly suggests that deep architectures can be much more efficient (sometimes exponentially) than shallow architectures, in terms of computational elements required to represent some functions. Deep multilayer neural networks have many levels of nonlinearities allow ..."
Abstract

Cited by 184 (32 self)
 Add to MetaCart
Complexity theory of circuits strongly suggests that deep architectures can be much more efficient (sometimes exponentially) than shallow architectures, in terms of computational elements required to represent some functions. Deep multilayer neural networks have many levels of nonlinearities allowing them to compactly represent highly nonlinear and highlyvarying functions. However, until recently it was not clear how to train such deep networks, since gradientbased optimization starting from random initialization appears to often get stuck in poor solutions. Hinton et al. recently introduced a greedy layerwise unsupervised learning algorithm for Deep Belief Networks (DBN), a generative model with many layers of hidden causal variables. In the context of the above optimization problem, we study this algorithm empirically and explore variants to better understand its success and extend it to cases where the inputs are continuous or where the structure of the input distribution is not revealing enough about the variable to be predicted in a supervised task. Our experiments also confirm the hypothesis that the greedy layerwise unsupervised training strategy mostly helps the optimization, by initializing weights in a region near a good local minimum, giving rise to internal distributed representations that are highlevel abstractions of the input, bringing better generalization.
Packet Routing in Dynamically Changing Networks: A Reinforcement Learning Approach
 Advances in Neural Information Processing Systems 6
, 1994
"... This paper describes the Qrouting algorithm for packet routing, in which a reinforcement learning module is embedded into each node of a switching network. Only local communication is used by each node to keep accurate statistics on which routing decisions lead to minimal delivery times. In simple ..."
Abstract

Cited by 182 (2 self)
 Add to MetaCart
This paper describes the Qrouting algorithm for packet routing, in which a reinforcement learning module is embedded into each node of a switching network. Only local communication is used by each node to keep accurate statistics on which routing decisions lead to minimal delivery times. In simple experiments involving a 36node, irregularly connected network, Qrouting proves superior to a nonadaptive algorithm based on precomputed shortest paths and is able to route efficiently even when critical aspects of the simulation, such as the network load, are allowed to vary dynamically. The paper concludes with a discussion of the tradeoff between discovering shortcuts and maintaining stable policies. 1 INTRODUCTION The field of reinforcement learning has grown dramatically over the past several years, but with the exception of backgammon [8, 2], has had few successful applications to largescale, practical tasks. This paper demonstrates that the practical task of routing packets through...