Results 1  10
of
26
Shortcut Fusion for Accumulating Parameters Ziplike Functions
, 2002
"... We present an alternative approach to shortcut fusion based on the function unfoldr. Despite its simplicity the technique can remove intermediate lists in examples which are known to be difficult. We show that it can remove all lists from definitions involving ziplike functions and functions using ..."
Abstract

Cited by 43 (0 self)
 Add to MetaCart
We present an alternative approach to shortcut fusion based on the function unfoldr. Despite its simplicity the technique can remove intermediate lists in examples which are known to be difficult. We show that it can remove all lists from definitions involving ziplike functions and functions using accumulating parameters.
Free Theorems in the Presence of seq
, 2004
"... Parametric polymorphism constrains the behavior of pure functional programs in a way that allows the derivation of interesting theorems about them solely from their types, i.e., virtually for free. Unfortunately, the standard parametricity theorem fails for nonstrict languages supporting a polymorph ..."
Abstract

Cited by 37 (12 self)
 Add to MetaCart
Parametric polymorphism constrains the behavior of pure functional programs in a way that allows the derivation of interesting theorems about them solely from their types, i.e., virtually for free. Unfortunately, the standard parametricity theorem fails for nonstrict languages supporting a polymorphic strict evaluation primitive like Haskell's $\mathit{seq}$. Contrary to the folklore surrounding $\mathit{seq}$ and parametricity, we show that not even quantifying only over strict and bottomreflecting relations in the $\forall$clause of the underlying logical relation  and thus restricting the choice of functions with which such relations are instantiated to obtain free theorems to strict and total ones  is sufficient to recover from this failure. By addressing the subtle issues that arise when propagating up the type hierarchy restrictions imposed on a logical relation in order to accommodate the strictness primitive, we provide a parametricity theorem for the subset of Haskell corresponding to a GirardReynoldsstyle calculus with fixpoints, algebraic datatypes, and $\mathit{seq}$. A crucial ingredient of our approach is the use of an asymmetric logical relation, which leads to ``inequational'' versions of free theorems enriched by preconditions guaranteeing their validity in the described setting. Besides the potential to obtain corresponding preconditions for standard equational free theorems by combining some new inequational ones, the latter also have value in their own right, as is exemplified with a careful analysis of $\mathit{seq}$'s impact on familiar program transformations.
Monadic augment and generalised short cut fusion
 Journal of Functional Programming
, 2005
"... Monads are commonplace programming devices that are used to uniformly structure computations with effects such as state, exceptions, and I/O. This paper further develops the monadic programming paradigm by investigating the extent to which monadic computations can be optimised by using generalisatio ..."
Abstract

Cited by 17 (7 self)
 Add to MetaCart
(Show Context)
Monads are commonplace programming devices that are used to uniformly structure computations with effects such as state, exceptions, and I/O. This paper further develops the monadic programming paradigm by investigating the extent to which monadic computations can be optimised by using generalisations of short cut fusion to eliminate monadic structures whose sole purpose is to “glue together ” monadic program components. We make several contributions. First, we show that every inductive type has an associated build combinator and an associated short cut fusion rule. Second, we introduce the notion of an inductive monad to describe those monads that give rise to inductive types, and we give examples of such monads which are widely used in functional programming. Third, we generalise the standard augment combinators and cata/augment fusion rules for algebraic data types to types induced by inductive monads. This allows us to give the first cata/augment rules for some common data types, such as rose trees. Fourth, we demonstrate the practical applicability of our generalisations by providing Haskell implementations for all concepts and examples in the paper. Finally, we offer deep theoretical insights by showing that the augment combinators are monadic in nature, and thus that our cata/build and cata/augment rules are arguably the best generally applicable fusion rules obtainable.
XML goes native: Runtime representations for Xtatic
 In 14th International Conference on Compiler Construction
, 2004
"... Abstract. Xtatic is a lightweight extension of C ♯ offering native support for statically typed XML processing. XML trees are builtin values in Xtatic, and static analysis of the trees manipulated by programs is part of the ordinary job of the typechecker. “Tree grep ” pattern matching is used to i ..."
Abstract

Cited by 16 (7 self)
 Add to MetaCart
(Show Context)
Abstract. Xtatic is a lightweight extension of C ♯ offering native support for statically typed XML processing. XML trees are builtin values in Xtatic, and static analysis of the trees manipulated by programs is part of the ordinary job of the typechecker. “Tree grep ” pattern matching is used to investigate and transform XML trees. Xtatic’s surface syntax and type system are tightly integrated with those of C ♯. Beneath the hood, however, an implementation of Xtatic must address a number of issues common to any language supporting a declarative style of XML processing (e.g., XQuery, XSLT, XDuce, CDuce, Xact, Xen, etc.). In particular, it must provide representations for XML tags, trees, and textual data that use memory efficiently, support efficient pattern matching, allow maximal sharing of common substructures, and permit separate compilation. We analyze these representation choices in detail and describe the solutions used by the Xtatic compiler. 1
The Impact of seq on Free TheoremsBased Program Transformations
 Fundamenta Informaticae
, 2006
"... Parametric polymorphism constrains the behavior of pure functional programs in a way that allows the derivation of interesting theorems about them solely from their types, i.e., virtually for free. Unfortunately, standard parametricity results — including socalled free theorems — fail for nonstrict ..."
Abstract

Cited by 14 (5 self)
 Add to MetaCart
Parametric polymorphism constrains the behavior of pure functional programs in a way that allows the derivation of interesting theorems about them solely from their types, i.e., virtually for free. Unfortunately, standard parametricity results — including socalled free theorems — fail for nonstrict languages supporting a polymorphic strict evaluation primitive such as Haskell’s seq. A folk theorem maintains that such results hold for a subset of Haskell corresponding to a GirardReynolds calculus with fixpoints and algebraic datatypes even when seq is present provided the relations which appear in their derivations are required to be bottomreflecting and admissible. In this paper we show that this folklore is incorrect, but that parametricity results can be recovered in the presence of seq by restricting attention to leftclosed, total, and admissible relations instead. The key novelty of our approach is the asymmetry introduced by leftclosedness, which leads to “inequational” versions of standard parametricity results together with preconditions guaranteeing their validity even when seq is present. We use these results to derive criteria ensuring that both equational and inequational versions of short cut fusion and related program transformations based on free theorems hold in the presence of seq.
Proving correctness via free theorems: The case of the destroy/buildrule
 IN PARTIAL EVALUATION AND PROGRAM MANIPULATION, PROCEEDINGS
, 2008
"... Free theorems feature prominently in the field of program transformation for pure functional languages such as Haskell. However, somewhat disappointingly, the semantic properties of so based transformations are often established only very superficially. This paper is intended as a case study showing ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
Free theorems feature prominently in the field of program transformation for pure functional languages such as Haskell. However, somewhat disappointingly, the semantic properties of so based transformations are often established only very superficially. This paper is intended as a case study showing how to use the existing theoretical foundations and formal methods for improving the situation. To that end, we investigate the correctness issue for a new transformation rule in the short cut fusion family. This destroy/buildrule provides a certain reconciliation between the competing foldr/build and destroy/unfoldrapproaches to eliminating intermediate lists. Our emphasis is on systematically and rigorously developing the rule’s correctness proof, even while paying attention to semantic aspects like potential nontermination and mixed strict/nonstrict evaluation.
A family of syntactic logical relations for the semantics of Haskelllike languages
 INFORMATION AND COMPUTATION
, 2009
"... Logical relations are a fundamental and powerful tool for reasoning about programs in languages with parametric polymorphism. Logical relations suitable for reasoning about observational behavior in polymorphic calculi supporting various programming language features have been introduced in recent y ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
Logical relations are a fundamental and powerful tool for reasoning about programs in languages with parametric polymorphism. Logical relations suitable for reasoning about observational behavior in polymorphic calculi supporting various programming language features have been introduced in recent years. Unfortunately, the calculi studied are typically idealized, and the results obtained for them offer only partial insight into the impact of such features on observational behavior in implemented languages. In this paper we show how to bring reasoning via logical relations closer to bear on real languages by deriving results that are more pertinent to an intermediate language for the (mostly) lazy functional language Haskell like GHC Core. To provide a more finegrained analysis of program behavior than is possible by reasoning about program equivalence alone, we work with an abstract notion of relating observational behavior of computations which has among its specializations both observational equivalence and observational approximation. We take selective strictness into account, and we consider the impact of different kinds of
Semantics and pragmatics of new shortcut fusion rules
 IN FLOPS, PROCEEDINGS, VOLUME 4989 OF LNCS
, 2008
"... We study various shortcut fusion rules for languages like Haskell. Following a careful semantic account of a recently proposed rule for circular program transformation, we propose a new rule that trades circularity for higherorderedness, and thus attains better semantic properties. This also leads ..."
Abstract

Cited by 4 (3 self)
 Add to MetaCart
We study various shortcut fusion rules for languages like Haskell. Following a careful semantic account of a recently proposed rule for circular program transformation, we propose a new rule that trades circularity for higherorderedness, and thus attains better semantic properties. This also leads us to revisit the original foldr/buildrule, as well as its dual, and to develop variants that do not suffer from detrimental impacts of Haskell’s mixed strict/nonstrict semantics. Throughout, we offer pragmatic insights about our new rules to investigate also their relative effectiveness, rather than just their semantic correctness.
Deaccumulation Techniques for Improving Provability ∗
"... Several induction theorem provers were developed to verify functional programs mechanically. Unfortunately, automatic verification often fails for functions with accumulating arguments. Using concepts from the theory of tree transducers and extending on earlier work, the paper develops automatic tra ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
Several induction theorem provers were developed to verify functional programs mechanically. Unfortunately, automatic verification often fails for functions with accumulating arguments. Using concepts from the theory of tree transducers and extending on earlier work, the paper develops automatic transformations from accumulative functional programs into nonaccumulative ones, which are much better suited for mechanized verification. The overall goal is to reduce the need for generalizing induction hypotheses in (semi)automatic provers. Via the correspondence between imperative programs and tailrecursive functions, the presented approach can also help to reduce the need for inventing loop invariants in the verification of imperative programs. 1
Design and implementation of deterministic higherorder patterns
, 2005
"... We introduce a class of deterministic higherorder patterns to Template Haskell for supporting declarative transformational programming with more elegant binding of pattern variables. Higherorder patterns are capable of checking and binding subtrees far from the root, which is useful for program m ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
(Show Context)
We introduce a class of deterministic higherorder patterns to Template Haskell for supporting declarative transformational programming with more elegant binding of pattern variables. Higherorder patterns are capable of checking and binding subtrees far from the root, which is useful for program manipulation. However, there are three major problems. First, it is difficult to explain why a particular desired matching result cannot be obtained because of the complicated higherorder matching algorithm. Second, the general higherorder matching algorithm is of high cost, which may be exponential time at worst. Third, the (possibly infinite) nondeterministic solutions of higherorder matching prevents it from being used in a functional setting. To resolve these problems, we impose reasonable restrictions on higherorder patterns to gain predictability, efficiency and determinism. We show that our deterministic higherorder patterns are powerful to support concise specification and efficient implementation of various kinds of program transformations for optimizations.